Skip to main content
Log in

Functional significance of ventricular dilatation

Reconsideration of Linzbach's concept of chronic heart failure

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

On the basis of theoretical considerations and experimental data this study deals with the functional consequences of structural dilatation, particularly in view of Linzbach's concept of chronic heart failure (34–38). After a short review of the literature, a theoretical analysis of the relationship between stroke volume and ventricular inner radius is presented assuming a thick-walled sphere. Presupposing constant contractility, end-diastolic sarcomere length, end-diastolic wall thickness and end-systolic pressure, only a considerable increase of ventricular radius could be the direct cause of ventricular pumping failure — despite increasing wall stress and reduced ejection fraction. Impaired contractility, as well as insufficient hypertrophy and increased systemic pressure, would intensify the adverse consequences of ventricular enlargement to a predictable extent. Thus, hemodynamic and energetic consequences of dilatation, although mutually interacting, should in principle be distinguished. Despite considerable simplifications involved in model calculations, the relative significance of contractility, ventricular size, wall thickness, and extracardiac factors (mechanical overload; neuroendocrine reactions) can be estimated in various animal models with congestive failure. Hence, this theoretical and experimental approach permits the modification and deepening of previous concepts of structural dilatation and also has implications for interpreting the effects of therapeutical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bonday PK (1985) Disorders of the adrenal cortex., In: Wilson JD, Foster DW (eds) Textbook of Endocrinology. Saunders, Philadelphia, pp 816–890

    Google Scholar 

  2. Braunwald E, Ross J, Sonnenblick EH (1967) Mechanisms of contraction of the normal and failing heart. Little, Brown and Co., Boston

    Google Scholar 

  3. Burch GE, Ray CT, Cronvich JA (1952) Certain mechanical pecularities of the human cardiac pump in normal and diseased states. Circulation 5:504–513

    PubMed  Google Scholar 

  4. Bürger S, Strauer BE (1981) Left ventricular hypertrophy in chronic pressure load due to essential hypertension. I. Left ventricular function, left ventricular geometry and wall stress. In: Strauer BE (ed) The Heart in Hypertension. Springer, Berlin Heidelberg New York, pp 13–26

    Google Scholar 

  5. Burns JW, Covell JW, Myers R, Ross, J (1971) Comparison of directly measured left ventricular wall stress and stress calculated from geometric reference figures. Circ Res 28:611–621

    PubMed  Google Scholar 

  6. Burton AC (1965) Physiology and biophysics of the circulation. Year Book Medical Publ Inc, Chicago

    Google Scholar 

  7. Bussmann W-D (1984) Akute und chronische Herzinsuffizienz. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Davis JO, Urquhart J, Higgins JT, Rubin EC, Hartroft PM (1964) Hypersecretion of aldosterone in dogs with a chronic aortic-caval fistula and high output heart failure. Circ Res 14:471–485

    PubMed  Google Scholar 

  9. Douglas PS, Reichek N (1986) Estimation of wall stress and left ventricular mass by noninvasive techniques and clinical implications. Cardiovasc Clin 17 (1):103–128

    PubMed  Google Scholar 

  10. Falsetti HL, Mates RE, Grant C, Greene DG, Bunnell IL (1970) Left ventricular wall stress calculated from one-place cineangiography. Circ Res 26:71–83

    PubMed  Google Scholar 

  11. Ford LE (1976) Heart Size. Circ Res 39:297–303

    PubMed  Google Scholar 

  12. Gould L, Reddy CV, Patel S, Gomes GI, Becker WH (1981) Noninvasive assessment of load reduction in chronic congestive heart failure patients. Angiology 32 (8):552–560

    PubMed  Google Scholar 

  13. Grossman W, Carabello BA, Ganther S, Fifger MA (1983) Ventricular wall stress and the development of cardiac hypertrophy and failure. In: Alpert NR (ed) Myocardial Hypertrophy and Failure. Raven Press, New York, pp 1–18

    Google Scholar 

  14. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Inv 56:56–64

    PubMed  Google Scholar 

  15. Gunther S, Grossmann W (1979) Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation 59:679–688

    PubMed  Google Scholar 

  16. Grimm AF, Hun-Lin Lin, Grimm BR (1983) The pattern of sarcomere lengths through the left ventricular free wall: differences between open and closed-chest rats. Basic Res Cardiol 78:560–570

    PubMed  Google Scholar 

  17. Gülch RW, Jacob R (1988) Significance and limitations of model calculations in cardiac hypertrophy and dilatation. Basic Res Cardiol 83:476–485

    PubMed  Google Scholar 

  18. Hepp A, Hansis M, Gülch R, Jacob R (1974) Left ventricular isovolumetric pressure-volume relations, “diastolic tone”, and contractility in the rat heart after physical training. Basic Res Cardiol 5:516–532

    Google Scholar 

  19. Hood WP, Rackley CE, Rolett EL, Hill C (1968) Wall stress in the normal and hypertrophied human left ventricle. Am J Cardiol 22:550–558

    PubMed  Google Scholar 

  20. Hort W (1977) Spezielle Pathologie und Anatomie. Kreislauforgane. In: Eder M, Gedigk P (Hrsg) Lehrbuch der Allgemeinen Pathologie und der Pathologischen Anatomie. Springer, Berlin Heidelberg New York, S 314–360

    Google Scholar 

  21. Huisman RM, Elzinga G, Westerhof N Sipkema P (1980) Measurement of left ventricular wall stress. Cardiovasc Res 14:142–153

    PubMed  Google Scholar 

  22. Huisman RM, Sipkema P, Westerhof N, Elzinga G (1980) Comparison of models used to calculate left ventricular wall force. Med Biol Eng Comp 18:133–144

    Google Scholar 

  23. Jacob R (1986) Cardiac responses to experimental chronic pressure overload. In: Zanchetti A, Tarazi RC (eds) Handbook of Hypertension, Vol 7: Pathophysiology of Hypertension-Cardiovascular Aspects. Elsevier Science Publ BV, pp 59–83

  24. Jacob R, Kissling G (1981) Left ventricular dynamics and myocardial function in Goldblatt hypertension of the rat. Biochemical, morphological and electrophysiological correlates. In: Strauer BE (ed) The Heart in Hypertension. Springer Berlin Heidelberg New York, pp 89–107

    Google Scholar 

  25. Jacob R, Kissling G (1985) Stellung des Herzens innerhalb des Gesamtkreislaufs. Allgemeine morphologische und funktionelle Charakterisierung. In: Brüschke G, Heublein B (Hrsg) Handbuch der Inneren Erkrankungen. VEB Gustav Fischer Verlag, Jena, Bd 1, 155–188

    Google Scholar 

  26. Jacob R, Kissling G, Rupp H, Vogt M (1987) Functional significance of contractile proteins in cardiac hypertrophy and failure. J Cardiovasc Pharmacol 10 (Suppl 6):S2-S12

    Google Scholar 

  27. Jacob R, Vogt M, Noma K (1987) Chronic cardiac reactions. I. Assessment of ventricular and myocardial work capacity in the hypertrophied and dilated ventricle. Basic Res Cardiol 82 (Suppl 2): 137–145

    Google Scholar 

  28. Jacob R, Vogt M, Rupp H (1986) Pathophysiological mechanisms in cardiac insufficiency induced by chronic pressure overload — an attempt to analyze specific factors in animal experiment. Basic Res Cardiol 81 (Suppl I):203–216

    PubMed  Google Scholar 

  29. Katz AM (1977) Physiology of the heart. Raven Press, New York

    Google Scholar 

  30. Kissling G, Gassenmaier T, Wendt-Gallitelli MF, Jacob R (1977) Pressure-volume relations, elastic modulus, and contractile behaviour of the hypertrophied left ventricle of rats with Goldblatt II hypertension. Pflügers Arch 369:213–221

    Google Scholar 

  31. Kumpuris AG, Quinones MA, Waggoner AD, Kanon DJ, Nelson JG, Miller RR (1982) Importance of preoperative hypertrophy, wall stress and end-systolic dimension as echocardiographic predictors of normalization of left ventricular dilatation after valve replacement in chronic aortic insufficiency. Am J Cardiol 49:1091–1100

    PubMed  Google Scholar 

  32. Lewartowski B, Sedek G, Okolska A, (1972). Direct measurement of tension within left ventricular wall of the dog heart. Cardiovasc Res 6:28–35

    PubMed  Google Scholar 

  33. LeWinter MM, Engler RL, Karliner JS (1980) Enhanced left ventricular shortening during chronic volume overload in conscious dogs. Am J Physiol 238:H126-H133

    PubMed  Google Scholar 

  34. Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382

    PubMed  Google Scholar 

  35. Linzbach AJ (1964) Die pathologische Anatomie der Herzinsuffizienz. In: Wollheim E, Schneider KW (Hrsg) Herzinsuffizienz. Hämodynamik und Stoffwechsel. Georg Thieme, Stuttgart, S 1–13

    Google Scholar 

  36. Linzbach AJ (1973) Chronische Herzdilatation und Herzinsuffizienz. In: Roskamm H, Reindell H (Hrsg) Das chronisch kranke Herz. Schattauer, Stuttgart New York, S 107–112

    Google Scholar 

  37. Linzbach AJ (1981) Structural adaptation of the heart in hypertension and the physical consequences. In: Strauer BE (ed) The Heart in Hypertension., Springer, Berlin Heidelberg New York, pp 243–249

    Google Scholar 

  38. Linzbach J, Kyrieleis Ch (1967) Strukturelle Analyse chronisch insuffizienter menschlicher Herzen. In: Reindell H, Keul J, Doll E (eds) Heart Failure, Pathophysiological and Clinical Aspects. Thieme, Stuttgart, pp 11–19

    Google Scholar 

  39. Mason DT, Spann JF, Zelis R, Amsterdam EA (1970) Alterations of hemodynamics and myocardial mechanics in patients with congestive heart failure: Pathophysiologic mechanisms and assessment of cardiac function and ventricular contractility. Progress in Cardiovasc Disease 12:507–557

    Google Scholar 

  40. Mirsky I (1974) Review of various theories for the evaluation of left ventricular wall stress. In: Mirsk I, Ghista DN, Sandler H (eds) Cardiac Mechanics. John Wiley & Sons Inc, New York London Sydney Toronto, pp 381–401

    Google Scholar 

  41. Mirsky I, Krayenbuehl H (1981) The role of wall stress in the assessment of ventricular function. In: Herz. Kardiovaskuläre Erkrankungen 6:288–299

  42. Mirsky I, Pfeffer JM, Pfeffer MA, Braunwald E (1983) The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. Circ Res 53:767–778

    PubMed  Google Scholar 

  43. Moriarty TF (1980) The law of Laplace. It limitations as a relation for diastolic pressure, volume, or wall stress of the left ventricle. Circ Res 46:321–331

    PubMed  Google Scholar 

  44. Motz W, Strauer BE (1985) Prevention of hypertensive hypertrophy by medical therapy: effects on systolic wall stress and systolic function. Basic Res Cardiol 80:642–652

    PubMed  Google Scholar 

  45. Nakashima Y, Fouad FM, Tarazi RC (1982) Long-term captopril therapy in congestive heart failure: serial hemodynamic and echocardiographic changes. Am Heart J 104 (4 Pt 1):827–833

    PubMed  Google Scholar 

  46. Neuhaus KL, Schmiel FK (1979) Modellberechnungen zum Einfluß von Hypertrophie und Dilatation auf die myokardialen Arbeitsbedingungen des linken Ventrikels. Z Kardiol 68:409–414

    PubMed  Google Scholar 

  47. Noma K, Brändle M, Jacob R (1988) Evaluation of left ventricular function in an experimental model of congestive heart failure due to combined pressure and volume overload. Basic Res Cardiol 83:58–64

    PubMed  Google Scholar 

  48. Parmley WW (1985) Pathophysiology of congestive heart failure: Systolic dysfunction. Heart Failure 1:61–68

    Google Scholar 

  49. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E (1983) Prevention of the development of heart failure and the regression of cardiac hypertrophy by captopril in the spontaneously hypertensive rat. Eur Heart J 4(Suppl A):143–148

    Google Scholar 

  50. Riecker G (1975) Klinische Kardiologie. Springer, Berlin Heidelberg New York, S 328–332

    Google Scholar 

  51. Ross J Jr (1976) Afterload mismatch and preload reserve: A conceptual framework for the analysis of ventricular function. Progr Cardiovasc Diseases 18:255–264

    Google Scholar 

  52. Sandler H, Dodge HT (1963) Left ventricular tension and stress in man. Circ Res 13:91–104

    PubMed  Google Scholar 

  53. Strauer BE (1980) Hypertensive Heart Disease. Springer, Berlin Heidelberg New York

    Google Scholar 

  54. Strauer BE (1984) Functional dynamics of the left ventricle in hypertensive hypertrophy and failure. Hypertension 6 (6 Pt 2):III4–12

    PubMed  Google Scholar 

  55. Streeter DD, Vaishnav RN, Patel DJ, Spotnitz HM, Ross J Jr, Sonnenblick E (1970) Stres distribution in the canine left ventricle during diastole and systole. Biophysical J 10: 345–363

    Google Scholar 

  56. Taylor RR, Covell JW, Ross J (1968) Left ventricular function in experimental aorto-caval fistula with circulatory congestion and fluid retention. J Clin Invest 47:1333–1342

    PubMed  Google Scholar 

  57. Vassalle M (1976) Cardiac physiology for the clinicion. Academic Press, New York San Francisco London

    Google Scholar 

  58. Vogt M, Jacob R, Kissling G, Rupp H (1987) Chronic cardiac reactions. II. Mechanical and energetic consequences of myocardial transformation versus ventricular dilatation in the chronically pressure-loaded heart. Basic Res Cardiol 82 (Suppl 2):147–159

    PubMed  Google Scholar 

  59. Vogt M, Jacob R, Noma K, Onegi B, Rupp H (1987) Chronic cardiac reactions. III. Factors involved in the development of structural dilatation., Basic Res Cardiol 82 (Suppl 2):161–172

    PubMed  Google Scholar 

  60. Wong AYK, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am Heart J 75:649–662

    PubMed  Google Scholar 

  61. Yin FCP (1981) Ventricular wall stress. Circ Res 49:829–842

    PubMed  Google Scholar 

  62. Zucker IH, Gilmore JP (1985) Aspects of cardiovascular reflexes in pathologic states. Fed Proc 44:2400–2407

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr. Erwin Riesch, Honorary Senator of the University of Tübingen, on the occasion of his 80th birthday

Supported by the Deutsche Forschungsgemeinschaft (Ja 172/14-1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, R., Gülch, R.W. Functional significance of ventricular dilatation. Basic Res Cardiol 83, 461–475 (1988). https://doi.org/10.1007/BF01906676

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906676

Key words

Navigation