Skip to main content
Log in

Subunits of myosin

Relations to ATPase activity and mechanical function of muscle

Untereinheiten des Myosinmoleküls

Beziehungen zur ATPase-Aktivität und mechanischen Funktion des Muskels

  • Editorial
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Summary

Under certain conditions the specific ATPase activity of myosin of a given muscle can be altered. The cause for this alteration can only lie in the myosin molecule itself. To produce an enzymatic activity of myosin, an interaction between their light and heavy chains is necessary. However, the specific activity appears to be determined mainly by light chains. Hence, one ought also to look for a basis of the changed activity in changes of the subunits of myosin. There are strong indications that the alterations in specific activity are accompanied by changes in the relative stoichiometry of the essential light chains of the respective myosin preparation. Probably there are different populations of myosin molecules in any given myosin preparation. They differ in their pattern of subunits. The specific activity of a given kind of myosin seems to be determined by the combination of their light chains. Thus, a close correlation exists between these two properties of myosin (ATPase activity and structure of its molecule).

There are sufficient indications, that these two properties of myosin correlate also with the mechanical capability of the corresponding muscle. Particularly the results of cross innervation studies demonstrate a close correlation between these three properties in skeletal muscle.

The single subunits of myosin are produced and degraded independently and at heterogeneous rates. The synthesis of these subunits is significantly accelerated in response to work overload. Thus, it is quite likely that the individual chains are non-coordinately synthesized, giving rise to variations in the relationship of different molecule types of myosin with different specific ATPase activity. Hence, the control mechanism to synthesize the individual subunits could also be the regulative mechanism to produce a myosin of the specific ATPase activity appropriate to the activity pattern of tissue.

Zusammenfassung

Unter bestimmten Bedingungen kann sich die spezifische ATPase-Aktivität vom Myosin eines Muskels ändern. Die Ursache für diese Variationen kann nur im Myosinmolekül selbst liegen. Für die enzymatische Aktivität von Myosin ist eine Wechselwirkung zwischen seinen leichten und schweren Ketten erforderlich. Es scheint jedoch, daß die spezifische Aktivität nur von den leichten Ketten bestimmt wird. Daher ist auch die Grundlage für Variationen dieser Aktivität in Änderungen dieser Untereinheiten zu suchen. Es gibt sichere Hinweise dafür, daß die Änderungen der spezifischen Aktivität von Änderungen in der relativen Stöchiometrie der essentiellen Ketten begleitet werden. Vermutlich besitzt jede Myosinpräparation verschiedene Populationen von Myosinmolekülen, die sich im Muster ihrer leichten Ketten unterscheiden. Die spezifische Aktivität eines bestimmten Molekültyps wird wahrscheinlich durch die Kombination seiner leichten Ketten bestimmt. So besteht zwischen diesen beiden Eigenschaften des Myosins (ATPase-Aktivität und Molekülstruktur) eine enge Korrelation. Es gibt genügend Hinweise dafür, daß diese beiden Eigenschaften von Myosin auch mit dem mechanischen Leistungsvermögen des entsprechenden Muskels korrelieren. Eine enge Korrelation dieser Parameter wird am besten durch die Ergebnisse von Kreuzinnervationsversuchen demonstriert. Die einzelnen Untereinheiten von Myosin werden separat und in verschiedenen Raten synthetisiert und abgebaut. Durch Mehrbelastung des Muskels wird die Synthese dieser Untereinheiten signifikant beschleunigt. Daher ist es leicht möglich, daß die einzelnen Ketten nun nicht koordiniert synthetisiert werden. Daraus können Verschiebungen in den Relationen verschledener Molekültypen mit verschiedenen ATPase-Aktivitäten entstehen. Der Mechanismus, welcher die Synthese der einzelnen Komponenten kontrolliert, könnte also zugleich der regulative Mechanismus sein, der die spezifische ATPase-Aktivität steuert und sie den Erfordernissen des entsprechenden Gewebes anpaßt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

ATPase:

adenosine triphosphatase

F-myosin:

myosin from fast skeletal muscle

S-myosin:

myosin from slow skeletal muscle

G-myosin:

myosin from cardiac muscle

LMM:

light meromyosin

HMM:

heavy meromyosin

HMM S-1 and S-2:

HMM subfragment-1 and-2

HC:

heavy chains

LC (1, 2, 3):

light chains (1, 2, 3)

DTNB:

5,5-dithiobis (2-nitrobenzoic acid)

References

  1. Alpert, N. R., M. S. Gordon, Amer. J. Physiol.202, 940–946 (1962).

    PubMed  Google Scholar 

  2. Aras, A., G. Hass, (Abstr.) Fed. Proc.21, 132 (1962).

    Google Scholar 

  3. Bárány, M., J. gen. Physiol.50, 197–218 (1967).

    Article  PubMed  Google Scholar 

  4. Bárány, M., R. I. Close, J. Physiol.213, 455–474 (1971).

    PubMed  Google Scholar 

  5. Bárány, M., T. E. Conover, L. H. Schliselfeld, E. Gaetjens, M. Goffart, Europ. J. Biochem.2, 156–164 (1967).

    Article  PubMed  Google Scholar 

  6. Bhan, A. K., J. Scheuer, Suppl. II Circulat.43 and44, II/132 (1971).

    Google Scholar 

  7. Brivio, R. P., J. R. Florini, Res. Commun.44, 628–633 (1971).

    Google Scholar 

  8. Buller, A. J., W. F. H. M. Mommaerts, K. Seraydarian, J. Physiol.205, 581–597 (1969).

    PubMed  Google Scholar 

  9. Chandler, B. M., E. H. Sonnenblick, J. F. Spann, Jr., P. E. Pool, Circulat. Res.21, 717–725 (1967).

    PubMed  Google Scholar 

  10. Chung, C. S., E. G. Richards, H. S. Olcott, Biochemistry6, 3154–3161 (1967).

    Article  PubMed  Google Scholar 

  11. Close, R., Nature206, 831–832 (1965).

    PubMed  Google Scholar 

  12. Connell, J. J., H. S. Olcott, Arch. Biochem.94, 128–135 (1961).

    Article  PubMed  Google Scholar 

  13. Dow, J., A. Stracher, Biochemistry10, 1316–1321 (1971).

    Article  PubMed  Google Scholar 

  14. Dreizen, P., L. C. Gershman, P. P. Trotta, A. Stracher, J. gen. Physiol.50, 85–118 (1967).

    Article  PubMed  Google Scholar 

  15. Dreizen, P., L. C. Gershman, Biochem.9, 1688–1693 (1970).

    Article  Google Scholar 

  16. Dreizen, P., D. J. Hartshorne, A. Stracher, J. biol. Chem.241, 443–448 (1966).

    PubMed  Google Scholar 

  17. Dreizen, P., D. H. Richards, Cold Spr. Harb. Symp. quant. Biol.27, 29–45 (1972).

    Google Scholar 

  18. Frederiksen, D. W., A. Holtzer, Biochem.7, 3935–3950 (1968).

    Article  Google Scholar 

  19. Gaetjens, E., K. Bárány, G. Bailin, H. Oppenheimer, M. Bárány, Arch. Biochem.123, 82–96 (1968).

    Article  PubMed  Google Scholar 

  20. Gazith, J., S. Himmelfarb, W. F. Harrington. J. biol. Chem.245, 15–22 (1970).

    PubMed  Google Scholar 

  21. Gershman, L. C., P. Dreizen, Biochem.9, 1677–1687 (1970).

    Article  Google Scholar 

  22. Gershman, L. C., P. Dreizen, A. Stracher, Proc. nat. Acad. Sci. (Wash.)56, 966–973 (1966).

    Google Scholar 

  23. Gershman, L. C., A. Stracher, P. Dreizen, Subunit interactions of myosin. Symposium of fibrous proteins Australia, Grewther, W. G., Ed., Sydney, Australia. p. 150 (1968).

  24. Gershman, L. C., A. Stracher, P. Dreizen, J. biol. Chem.244, 2726–2736 (1969).

    PubMed  Google Scholar 

  25. Gröschel-Stewart, U., Biochem. biophys. Acta229, 322–334 (1971).

    PubMed  Google Scholar 

  26. Gröschel-Stewart, U., F. Turba, Biochem. Z.337, 104–108 (1963).

    PubMed  Google Scholar 

  27. Hardy, M. F., S. V. Perry, Nature (Lond.)223, 300–302 (1969).

    Google Scholar 

  28. Hardy, M. F., I. Harris, S. V. Perry, D. Stone, Biochem. J.117, 44P-45P (1970).

    Google Scholar 

  29. Hearn, G. R., P. D. Gollnick, Int. Z. angew. Physiol.19, 23–26 (1961).

    PubMed  Google Scholar 

  30. Heywood, S. M., A. Rich, Biochem.59, 590–597 (1968).

    Google Scholar 

  31. Holtzer, A., S. Lowey, T. Schuster, In: The molecular basis of neoplasia, p. 259 (1962). University of Texas Press, Austin.

    Google Scholar 

  32. Holtzer, A., S. Lowey, J. Amer. chem. Soc.81, 1370–1377 (1959).

    Article  Google Scholar 

  33. Horvath, B. Z., E. Gaetjens, Biochim. biophys. Acta (Amst.)263, 779–793 (1972).

    Google Scholar 

  34. Huszar, G., M. Elzinga, Nature (Lond.)223, 834–835 (1969).

    Google Scholar 

  35. Kämmereit, A., I. Medugorac, E. Steil, R. Jacob, Basic Res. Cardiol.70, 595 (1975).

    Google Scholar 

  36. Katz, A. M., J. Pharmacol. exp. Ther.154, 558–565 (1966).

    PubMed  Google Scholar 

  37. Katz, A. M., Amer. J. Physiol.212, 39–42 (1967).

    PubMed  Google Scholar 

  38. Kendrick-Jones, J., S. V. Perry, Biochem. J.103, 207–214 (1967).

    PubMed  Google Scholar 

  39. Kendrick-Jones, J., E. M. Szentkiralyi, A. G. Szent-Györgyi, Cold. Spr. Harb. Symp. quant. Biol.37, 47–53 (1972).

    Google Scholar 

  40. Kielley, W. W., W. F. Harrington, Biochim biophys. Acta (Amst.)41, 401–421 (1960).

    Article  Google Scholar 

  41. Kim, H. D., W. F. H. M. Mommaerts, Biochim. biophys. Acta (Amst.)245, 230–234 (1971).

    Google Scholar 

  42. Kimata, S., E. Morkin, Amer. J. Physiol.221, 1706–1713 (1971).

    PubMed  Google Scholar 

  43. Kominz, D. R., W. R. Carroll, E. N. Smith, E. R. Mitchell, Arch. Biochem.79, 191–199 (1959).

    Article  Google Scholar 

  44. Kominz, D. R., E. R. Mitchell, T. Niheri, C. M. Kay, A. Biochemistry4, 2373–2382 (1965).

    Article  Google Scholar 

  45. Kuehl, W. M., R. S. Adeistein, Biochem. Biophys. Res. Commun.37, 59–65 (1969).

    Article  PubMed  Google Scholar 

  46. Kuehl, W. M., R. S. Adelstein, Biochem. Biophys. Res. Commun.39, 956–964 (1970).

    Article  PubMed  Google Scholar 

  47. Leger, J. J., B. Focant, Biochim. biophys. Acta (Amst.)328, 166–172 (1973).

    Google Scholar 

  48. Lobley, G. E., S. V. Perry, D. Stone, Nature (Lond.)231, 317–318 (1971).

    Google Scholar 

  49. Locker, R. H., Biochim. biophys. Acta (Amst.)20, 514–521 (1956).

    Article  Google Scholar 

  50. Locker, R. H., C. J. Hagyard, Arch. Biochem.120, 241–244 (1967).

    Article  PubMed  Google Scholar 

  51. Locker, R. H., C. J. Hagyard, Arch. Biochem.120, 454–461 (1967).

    Article  PubMed  Google Scholar 

  52. Locker, R. H., C. J. Hagyard, Arch. Biochem.127, 370–375 (1968).

    Article  PubMed  Google Scholar 

  53. Low, R. B., J. N. Vournakis, A. Rich, Biochemistry10, 1813–1818 (1971).

    Article  PubMed  Google Scholar 

  54. Lowey, S., Subunits in biological systems. Part A. In: Biological macromolecules5, New York (1971).

  55. Lowey, S., C. Cohen, J. molec. Biol.4, 293–308 (1962).

    PubMed  Google Scholar 

  56. Lowey, S., L. Goldstein, C. Cohen, S. M. Luck, J. molec. Biol.23, 287–304 (1967).

    PubMed  Google Scholar 

  57. Lowey, S., J. C. Holt, Cold Spr. Harb. Symp. quant. Biol.37, 19–28 (1972).

    Google Scholar 

  58. Lowey, S., D. Risby, Nature (Lond.)234, 81–85 (1971).

    Google Scholar 

  59. Lowey, S., H. S. Slayter, A. G. Weeds, H. Backer, J. molec. Biol.42, 1–29 (1969).

    Article  PubMed  Google Scholar 

  60. Lowey, S., L. A. Steiner, J. molec. Biol.65, 111–126 (1972).

    Article  PubMed  Google Scholar 

  61. Luchi, R. J., E. M. Kritcher, J. Pharmacol. exp. Ther.158, 540–545 (1967).

    PubMed  Google Scholar 

  62. Luchi, R. J., E. M. Kritcher, P. T. Thyrum, Circulat. Res.24, 513–519 (1969).

    PubMed  Google Scholar 

  63. Medugorac, I., Experientia31, 941–942 (1975).

    PubMed  Google Scholar 

  64. Medugorac, I., A. Kämmereit, R. Jacob, Hoppe-Seyler's Z. Physiol. Chem.356, 1161–1171.

  65. Meerson, F. Z., Circulat. Res.25, Suppl. II, 82–163 (1969).

    Google Scholar 

  66. Meerson, F. Z., Der Zustand der Strukturproteine und der Myokardstrukturen bei der Hyperfunktion, Hypertrophie und Insuffizienz des Herzens. In: Hyperfunktion, Hypertrophie und Insuffizienz des Herzens. Berlin (1969).

  67. Morkin, E., S. Kimata, J. J. Skillman, Circulat. Res.30, 690–702 (1972).

    PubMed  Google Scholar 

  68. Morkin, E., Y. Yazakki, T. Katagiri, P. J. Laraia, Biochim. biophys. Acta (Amst.)324, 420–429 (1973).

    Google Scholar 

  69. Mueller, H., J. biol. Chem.239, 797–804 (1964).

    PubMed  Google Scholar 

  70. Mueller, H., S. V. Perry, Biochem. J.80, 217–223 (1961).

    PubMed  Google Scholar 

  71. Mueller, H., S. V. Perry, Biochem. J.85, 431–439 (1962).

    PubMed  Google Scholar 

  72. Nebel, M. L., R. J. Bing, Arch. intern. Med.111, 190–195 (1963).

    PubMed  Google Scholar 

  73. Oppenheimer, H., K. Bárány, G. Hamoir, J. Fenton, Arch. Biochem.120, 108–118 (1967).

    Article  PubMed  Google Scholar 

  74. Oganessyan, S., T. Zaminian, N. Bay, V. Petrosian, A. Koschkarian, I. Martirosian, M. Eloyan, J. Mol. Cell. Cardiol.5, 1–24 (1973).

    Article  PubMed  Google Scholar 

  75. Parterson, B., R. C. Strohman, Biochem.9, 4094–4105 (1970).

    Article  Google Scholar 

  76. Perry, S. V., Biochem. J.74, 94 (1960).

    PubMed  Google Scholar 

  77. Perry, S. V., Biochemical adaptation during development and growth in skeletal muscle. In: The physiology and biochemistry of muscle as food. Vol.2, pp. 537–553 (1970).

  78. Perrie, W. T., S. V. Perry, Biochem. J.119, 31–38 (1970).

    PubMed  Google Scholar 

  79. Perrie, W. T., S. V. Perry, D. Stone, Biochem. J.113, 28P-29P (1969).

    Google Scholar 

  80. Rabinowitz, M., Amer. J. Cardiol.31, 202–210 (1973).

    Article  PubMed  Google Scholar 

  81. Rawlinson, W. A., M. K. Gould, Biochem. J.73, 44–48 (1959).

    PubMed  Google Scholar 

  82. Samaha, F. J., L. Guth, R. W. Albers, Exp. Neurol.27, 276–282 (1970).

    Article  PubMed  Google Scholar 

  83. Samaha, F. J., L. Guth, R. W. Albers, J. biol. Chem.245, 219–224 (1970).

    PubMed  Google Scholar 

  84. Sarkar, S., Cold Spr. Harb. Symp. quant. Biol.37, 14–17 (1972).

    Google Scholar 

  85. Sarkar, S., P. H. Cooke, Biochem. biophys. Res. Commun.41, 918–925 (1970).

    Article  PubMed  Google Scholar 

  86. Schellman, J. A., C. G. Schellman, J. Polymer Sci.49, 129–151 (1961).

    Article  Google Scholar 

  87. Seagren, S. C., C. L. Skelton, P. E. Pool, Amer. J. Physiol.220, 847–851 (1971).

    PubMed  Google Scholar 

  88. Syrový, I., E. Gutman, J. Melichna, Physiol. bohemoslov.21, 633–639 (1972).

    PubMed  Google Scholar 

  89. Syrový, I., E. Gutman, Experientia (Basel)27, 248 (1971).

    Google Scholar 

  90. Slayter, H. S., S. Lowey, Proc. nat. Acad. Sci. (Wash.)58, 1611–1618 (1967).

    Google Scholar 

  91. Stracher, A., Biochem. biophys. Res. Commun.35, 519–525 (1969).

    Article  PubMed  Google Scholar 

  92. Swynghedauw, B., C. Klotz, J. J. Leger, M. Preteseille, J. Mol. cell. Cardiol.5, 501–514 (1973).

    Article  PubMed  Google Scholar 

  93. Tonomura, Y., P. Appel, M. Morales, II. Biochem.5, 515–521 (1966).

    Article  Google Scholar 

  94. Tonomura, Y., S. Tokura, K. Sekiya, J. biol. Chem.237, 1074–1081 (1962).

    PubMed  Google Scholar 

  95. Trayer, I. P., C. I. Harris, S. C. Perry, Nature (Lond.)217, 452–453 (1968).

    Google Scholar 

  96. Trayer, I. P., S. V. Perry, Biochem. Z.345, 87–100 (1966).

    Google Scholar 

  97. Trotta, P. P., P. Dreizen, A. Stracher, Proc. nat. Acad. Sci. (Wash.)61, 659–666 (1968).

    Google Scholar 

  98. Tsao, T. C., Biochim. biophys. Acta (Amst.)11, 368–382 (1953).

    Article  Google Scholar 

  99. Warren, J. C., L. Stowring, M. F. Morales, J. biol. Chem.241, 309–316 (1966).

    PubMed  Google Scholar 

  100. Weber, K., M. Osborn, J. biol. Chem.244, 4406–4412 (1969).

    PubMed  Google Scholar 

  101. Weeds, A. G., Nature (Lond.)223, 1362–1364 (1969).

    Google Scholar 

  102. Weeds, A. G., G. Frank, Cold Spr. Harb. Symp. quant. Biol.37, 9–14 (1972).

    Google Scholar 

  103. Weeds, A. G., B. S. Hartley, Biochem. J.107, 531–548 (1968).

    PubMed  Google Scholar 

  104. Weeds, A. G., S. Lowey, J. molec. Biol.61, 701–725 (1971).

    Article  PubMed  Google Scholar 

  105. Weeds, A. G., B. Pope, Nature (Lond.)234, 85–88 (1971).

    Google Scholar 

  106. Weltlaufer, D. B., J. J. Edsall, Biochim. biophys. Acta (Amst.)43, 132–134 (1960).

    Article  Google Scholar 

  107. Wikman-Coffelt, J., R. Zelis, C. Fenner, D. T. Mason, Prep. Biochem.3, 439–449 (1973).

    PubMed  Google Scholar 

  108. Wikman-Coffelt, J., R. Zelis, C. Fenner, D. T. Mason, Biochem. biophys. Res. Commun.51, 1097–1104 (1973).

    Article  PubMed  Google Scholar 

  109. Wikman-Coffelt, J., R. Zelis, D. T. Mason, J. biol. Chem.248, 5206–5207 (1973).

    PubMed  Google Scholar 

  110. Wikman-Coffelt, J., R. Zelis, C. Fenner, D. T. Mason, Analyses of the substructure and kinetics of myosin from normal and hypertrophied but non-failing right ventricles of canine heart. In: Myocardial cell damage. VI. Ann. Meet. of the Intern. Study Group for Res. in Cardiac Metabolism. Freiburg (1973) (in press).

  111. Wilkerson, J. E., E. Evonuk, J. appl. Physiol.30, 328–330 (1971).

    PubMed  Google Scholar 

  112. Woods, E. F., S. Himmelfarb, W. F. Harrington, J. biol. Chem.238, 2374–2385 (1963).

    PubMed  Google Scholar 

  113. Yazaki, Y., S. Mochinaga, M. S. Raben, Biochim. biophys. Acta (Amst.)328, 464–469 (1973).

    Google Scholar 

  114. Young, D. M., S. Himmelfarb, W. F. J. Harrington, J. biol. Chem.239, 2822–2829 (1964).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medugorac, I. Subunits of myosin. Basic Res Cardiol 70, 467–479 (1975). https://doi.org/10.1007/BF01906379

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01906379

Navigation