Skip to main content
Log in

Spectroscopic evidence for charge-transfer complexation in monoclonal antibodies that bind opiates

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Molecular complexes of four monoclonal anti-morphine antibodies (mAb) with the opiate ligands morphine, oxymorphone, and naloxone were studied using UV-VIS absorption spectroscopy. Although strong overlaps in the absorption spectra of the antibodies, ligands, and complexes were observed, a curve-fitting method was developed to correlate the absorbance with the concentration of the ligand-antibody complex. Using this technique, we determined the intrinsic association constants for the mAb with morphine to be in the nanomolar range, while association constants for oxymorphone and naloxone were in the micromolar range. These values were found to be in agreement with previous radioimmunoassay determinations. We also observed different changes in the absorbancy of the mAb upon complexation with different ligands and such changes were found to be different for all four mAb examined. Upon complexation with the ligand morphine, two of the mAb (clone numbers MOR368-21 and MOR10.5) displayed distinct charge-transfer spectral bands in the 320-nm region. These observations suggest that mAb binding site tryptophans may participate in the formation of the antibody-ligand complex and such complexation involves a charge-transfer interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAMM:

computer-aided molecular modeling

CDR:

complementarity-determining region

corr:

correlation coefficient

K A :

assocation constant

mAb:

monoclonal antibody

PBS:

phosphate buffered saline,pH 7.0.

References

  • Bevington, P. R. (1969).Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.

    Google Scholar 

  • Cilento, G., and Tedeschi, P. (1961). Pyridine coenzymes IV. Charge transfer interaction with the indole nucleus,J. Biol. Chem. 236, 907–910.

    Article  CAS  PubMed  Google Scholar 

  • Cilento, G., and Zinner, K. (1968). Charge-transfer complexes in biological oxidations. InMolecular Associations in Biology (Pullman, B., ed.), Academic Press, New York, pp. 309–321.

    Chapter  Google Scholar 

  • Cook, C., and Drayer, D. (1988). Antibodies: A rich source of novel chemical agents for pharmacological studies,Trends Pharmacol. Sci. 9, 373–375.

    Article  CAS  PubMed  Google Scholar 

  • Davies, D. R., and Metzger, H. (1983). Structural basis of antibody function,Annu. Rev. Immunol. 1, 87–117.

    Article  CAS  PubMed  Google Scholar 

  • Davies, D. R., Padlan, E. A., and Sheriff, S. (1990). Antibody-antigen complexes,Annu. Rev. Biochem. 59, 439–473.

    Article  CAS  PubMed  Google Scholar 

  • Droupadi, P. R., Anchin, J. M., Meyer, E. A., and Linthicum, D. S. (1993). Spectrofluorimetric study of the intermolecular complexation of monoclonal antibodies with the high potency sweetener N-(p-cyanophenyl)-N′-diphenylmethyl) guanidine acetic acid,J. Mol. Recog. 5, 173–179.

    Article  Google Scholar 

  • Edelhoch, H. (1967). Spectroscopic determination of tryptophan and tyrosine in proteins,Biochemistry 6, 1948–1954.

    Article  CAS  PubMed  Google Scholar 

  • Fairclough, R. H., and Cantor, C. R. (1978). The use of singlet-singlet energy transfer to study macromolecular assemblies,Meth. Enzymol. 48, 347–379.

    Article  CAS  Google Scholar 

  • Foster, R., and Hanson, P. (1965). Interaction of electron acceptors with bases. XIII The interaction of indole with tetracyanoethylene in dichloromethane,Tetrahedron 21, 255–260.

    Article  CAS  Google Scholar 

  • Fujimori, E. (1959). Interaction between pteridines and tryptophan,Proc. Natl. Acad. Sci. USA 45, 133–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabler, D., Mandal, C., Harrington, C., Adamczyk, M., and Linthicum, D. S. (1992). Kinetic and energetic parameters of imipramine binding to monoclonal antibodies as measured by fluorescence spectroscopy,Hybridoma 11, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. C., and von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data,Anal. Biochem. 182, 319–326.

    Article  CAS  PubMed  Google Scholar 

  • Guddat, L., Shan, L., Anchin, J., Linthicum, D. S., and Edmundson, A. B. (1993). Local and transmitted conformational changes on complexation of an anti-sweetener Fab,J. Mol. Biol. (in press).

  • Harbury, H., LaNoue, K. F., Loach, P., and Amick, R. (1959). Molecular interaction of isoalloxazine derivatives,Proc. Natl. Acad. Sci. USA 45, 1708–1717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isenberg, I., and Szent-Gyorgi, A. (1958). Free radical formation in riboflavin complexes,Proc. Natl. Acad. Sci. USA 44, 857–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson, W. R. C., and Dwek, R. A. (1981). On the contribution of tryptophan to the affinity and specificity of dinitrophenyl antibodies,Mol. Immunol. 18, 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Kabat, E. A., Wu, T. T., and Bilofsky, H. (1977). Unusual distribution of amino acids in complementarity-determining (hypervariable) segments of heavy and light chains of immunoglobulins and their possible roles in specificity of antibody-combining sites,J. Biol. Chem. 252, 6609–6616.

    Article  CAS  PubMed  Google Scholar 

  • Kolb, V. M. (1987). The stereoelectronic effects at the opiate receptors: Their influence on affinity and intrinsic activity,Adv. Drug Res. 16, 281–307.

    CAS  Google Scholar 

  • Kussie, P. H., Albright, G., and Linthicum, D. S. (1989). Production and characterization of monoclonal idiotypes and anti-idiotypes for small ligands,Meth. Enzymol. 178, 49–63.

    Article  CAS  Google Scholar 

  • Kussie, P. H., Anchin, J. M., Subramaniam, S., Glasel, J., and Linthicum, D. S. (1991). Molecular analysis of the binding site architecture of monoclonal antibodies to morphine by using competitive ligand binding and molecular modelling,J. Immunol. 146, 4248–4257.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, C., Mandal, C., Harrington, C., Adamczyk, M., and Linthicum, D. S. (1992). Kinetics of haloperidol binding to monoclonal antibodies as measured by direct fluorescence quenching,Biochem. Pharmacol. 43, 855–863.

    Article  CAS  PubMed  Google Scholar 

  • Mukkur, T. K. S. (1984). Thermodynamics of hapten-antibody interactions,Crit. Rev. Biochem. 16, 133–167.

    Article  CAS  Google Scholar 

  • Mulliken, R. S. (1952). Molecular compounds and their spectra,J. Am. Chem. Soc. 74, 811–824.

    Article  CAS  Google Scholar 

  • Novotny, J., Bruccoleri, R., Newell, J., Murphy, D., Haber, E., and Karplus, M. (1983). Molecular anatomy of the antibody binding site,J. Biol. Chem. 258, 14433–14437.

    Article  CAS  PubMed  Google Scholar 

  • Pullman, B., and Pullman, A. (1958). Electron-donor and acceptor properties of biologically important purines, pyrimidines, pteridines, flavins and aromatic amino acids,Proc. Natl. Acad. Sci. USA 44, 1197–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shifrin, S. (1968). Charge-transfer complexes in enzyme-coenzyme models. InMolecular Associations in Biology (Pullman, B., ed.), Academic Press, New York, pp. 323–341.

    Chapter  Google Scholar 

  • Shinitzky, M., and Katchalski, E. (1968). Complexes between indole and imidazole derivatives of the charge-transfer type. InMolecular Associations in Biology (Pullman, B., ed.), Academic Press, New York, pp. 361–376.

    Chapter  Google Scholar 

  • Silifkin, M. A., and Heathcote, J. G. (1968). Charge-transfer interactions in certain physiological processes. InMolecular Associations in Biology. (Pullman, B., ed.), Academic Press, New York, pp. 343–359.

    Chapter  Google Scholar 

  • Stryer, L. (1978). Fluorescence energy transfer as a spectroscopic ruler,Annu. Rev. Biochem. 47, 819–846.

    Article  CAS  PubMed  Google Scholar 

  • Templeton, E. F. G., and Ware, W. R. (1985). Charge transfer between fluorescein and tryptophan as a possible interaction in the binding of fluorescein to anti-fluorescein antibody,Mol. Immunol. 22, 45–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Linthicum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droupadi, P.R., Meyers, E.A. & Linthicum, D.S. Spectroscopic evidence for charge-transfer complexation in monoclonal antibodies that bind opiates. J Protein Chem 13, 297–306 (1994). https://doi.org/10.1007/BF01901562

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01901562

Key words

Navigation