Skip to main content
Log in

Stability of clamped skew plates

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The stability problems of clamped skew plates are considered with the inplane stresses represented in terms of oblique components. Deflection is expressed in terms of a double series of beam characteristic functions of clamped-clamped beam. Energy method is used to obtain buckling coefficients under individual loadings and for a few cases of combined loading. Convergence is examined in a few representative cases. For buckling in shear, two critical values exist the magnitude of negative shear being much larger than that of positive shear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b :

dimensions of the plate

C rs :

coefficient in the series expansion of deflection

D :

flexural rigidity of the plate (Eh 3/12(1−v 2))

E :

Young's modulus of the material of the plate

G, H (1),H (2),H (3) :

matrices defined in (15)

G 1 :

matrix defined in (16)

h :

plate thickness

I pqmr , J pqns :

integrals defined in (11)

K :

order of the matrix

M, N :

maximum number of terms inx- andy-directions respectively

N x,N y,N xy :

midplane forces x, y, xy respectively

\(\bar R_x^* ,\bar R_y^* ,\bar R_{xy}^* \) :

nondimensional midplane force parameters,\(\frac{{h\sigma _x a^2 \cos ^3 \psi }}{D},\frac{{h\sigma _y a^2 \cos ^3 \psi }}{D},\frac{{h\sigma _{xy} a^2 \cos ^3 \psi }}{D}\) respectively

\(\bar R_x ,\bar R_y ,\bar R_{xy} \) :

buckling coefficients,\(\frac{{\sigma _x hb^2 }}{{\pi ^2 D}},\frac{{\sigma _y hb^2 }}{{\pi ^2 D}},\frac{{\sigma _{xy} hb^2 }}{{\pi ^2 D}}\) respectively

U :

strain energy of the plate

V :

potential energy of the middle surface forces

W(ξ, η):

deflection of the plate

X m(ξ),Y n(η):

beam characteristic functions

x, y, z :

oblique coordinate system defined in Fig. 1

x 1,y 1,z :

orthogonal coordinate system defined in Fig. 1

ξ, η :

nondimensional coordinates,x/a andy/b respectively

ν :

ratio

σ x,σ y,σ xy :

oblique stress components defined in Fig. 1

λ :

side ratio (a/b)

ψ :

skew angle

2 :

skew differential operator\(\left( {\sec ^2 \psi \left( {\frac{{\partial ^2 }}{{\partial x^2 }} - 2\sin \psi \frac{{\partial ^2 }}{{\partial x^2 \partial y}} + \frac{{\partial ^2 }}{{\partial y^2 }}} \right)} \right)\)

21 :

skew differential operator in nondimensional coordinates\(\left( {\sec ^2 \psi \left( {\frac{{\partial ^2 }}{{\partial \xi ^2 }} - 2\lambda \sin \psi \frac{{\partial ^2 }}{{\partial \xi ^2 \partial \eta }} + \lambda ^2 \frac{{\partial ^2 }}{{\partial \eta ^2 }}} \right)} \right)\)

α, β :

ratios ofσ y/σ x andσ xy/σ x respectively

ε m,ε n :

beam eigenvalues, (7) and (8)

α m,α n :

parameters in beam characteristic functions, (7) and (8)

References

  1. Anonymous, Data Sheets. Stressed Skin Structures, Roy. Aeron. Soc., 2.

  2. Gerard, G., andH. Becker, Handbook of Structural Stability. Part I, NACA TN 3781, 1957.

  3. Morley, L. S. D., Skew Plates and Structures, Pergamon Press, 1963.

  4. Guest, J., Report SM. 172, Aeron. Res. Lab., 1951.

  5. Mansfield, E. H., Aircraft Eng.24 (1952) 48.

    Google Scholar 

  6. Wittrick, W. H., The Aeron. Quart.4 (1953) 151.

    Google Scholar 

  7. Wittrick, W. H., The Aeron. Quart.5 (1954) 39.

    Google Scholar 

  8. Hasegawa, M., J. Aeron. Sci.21 (1954) 720.

    Google Scholar 

  9. Hamada, M., Bull. JSME,2 (1959) 520.

    Google Scholar 

  10. Argyris, J. H., Proceedings of the Conference held at Wright-Patterson Air Force Base, Ohio, October 26–28, 1965, p. 11.

  11. Durvasula, S., Rep. No. AE 245 S. Dept. Aeron. Eng., Ind. Inst. Sci., Bangalore, April 1969.

  12. Ashton, J. E., J. App. Mech. Vol. 36, Trans ASME.91 (1969) 139.

    Google Scholar 

  13. Felgar, R. P., Circular No. 14, Bureau of Eng. Res, University of Texas, 1950.

  14. Durvasula, S., P. Bhatia, andP. S. Nair, Rep. No. AE 220 S, Dept. Aeron. Eng., Ind. Inst. Sci., Bangalore, March 1969.

  15. Durvasula, S., andE. S. Nair, Israel, J. Tech.7 (1969) 303.

    Google Scholar 

  16. Levy, S., J. App. Mech.9 (1942) 171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prabhu, M.S.S., Durvasula, S. Stability of clamped skew plates. Appl. Sci. Res. 26, 255–271 (1972). https://doi.org/10.1007/BF01897854

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01897854

Keywords

Navigation