Skip to main content
Log in

The amino acid sequence of glutamate dehydrogenase fromPyrococcus furiosus, a hyperthermophilic archaebacterium

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

The complete amino acid sequence of glutamate dehydrogenase from the archaebacteriumPyrococcus furiosus has been determined. The sequence was reconstructed by automated sequence analysis of peptides obtained after cleavage with cyanogen bromide, Asp-N endoproteinase, trypsin, or pepsin. The enzyme subunit is composed of 420 amino acid residues yielding a molecular mass of 47,122 D. In the recently determined primary structure of glutamate dehydrogenase from another thermophilic archaebacterium,Sulfolobus solfataricus, the presence of some methylated lysines was detected and the possible role of this posttranslational modification in enhancing the thermostability of the enzyme was discussed (Maras, B., Consalvi, V., Chiaraluce, R., Politi, L., De Rosa, M., Bossa, F., Scandurra, R., and Barra, D. (1992),Eur. J. Biochem. 203, 81–87). In the primary structure reported here, such posttranslational modification has not been found, indicating that the role of lysine methylation should be revisited. Comparison of the sequence of glutamate dehydrogenase fromPyrococcus furiosus with that ofS. solfataricus shows a 43.7% similarity, thus indicating a common evolutionary pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammendola, S., Raia, C. A., Caruso, C., Camardella, L., D'Auria, S., De Rosa, M., and Rossi, M. (1992).Biochemistry 31, 12,514–12,523.

    Article  CAS  Google Scholar 

  • Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., and Tratschin, J. D. (1979).Biochemistry 18, 5898–5903.

    Google Scholar 

  • Baker, P. J., Britton, K. L., Engel, P. C., Farrants, G. W., Lilley, K. S., Rice, D. W., and Stillmann, T. J. (1992).Proteins 12, 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Barra, D., Schininà, M. E., Simmaco, M., Bannister, J. V., Bannister, W. H., Rotilio, G., and Bossa, F. (1984).J. Biol. Chem. 259, 12,595–12,601.

    Article  CAS  Google Scholar 

  • Benachenlou-Lahfa, N., Forterre, P., and Labedan, B. (1993).J. Mol. Evol. 36, 335–346.

    Google Scholar 

  • Braunstein, A. E. (1975).Adv. Enzymol. 19, 335–339.

    Google Scholar 

  • Britton, K. L., Baker, P. J., Rice, D. W., and Stillman, T. J. (1992).Eur. J. Biochem. 209, 851–859.

    Article  CAS  PubMed  Google Scholar 

  • Consalvi, V., Chiaraluce, R., Politi, L., Vaccaro, R., De Rosa, M., and Scandurra, R. (1991).Eur. J. Biochem. 202, 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  • Eggen, R. I. L., Geerling, A. C. M., Waldkötter, K., Antranikian, G., and De Vos, W. M. (1993).Gene 132, 143–148.

    Article  CAS  PubMed  Google Scholar 

  • Fiala, G., and Stetter, K. O. (1986).Arch. Microbiol. 145, 56–61.

    Article  CAS  Google Scholar 

  • Fontana, A. (1991).Life Under Extreme Conditions: Biochemical Adaptation (Di Prisco, G., ed.), Springer-Verlag, Berlin, pp. 89–113.

    Chapter  Google Scholar 

  • Jaenicke, R. (1991).Eur. J. Biochem. 202, 715–728.

    Article  CAS  PubMed  Google Scholar 

  • Kellis, J. T., Jr., Nyberg, K., Sali, D., and Fersht, A. J. (1988).Nature 333, 784–786.

    Article  CAS  PubMed  Google Scholar 

  • Lake, J. A. (1991a).Trends Biochem. Sci. 16, 46–50.

    Article  CAS  PubMed  Google Scholar 

  • Lake, J. A. (1991b).Trends Biochem. Sci. 16, 289–299.

    Article  Google Scholar 

  • Linkkila, T. P., and Gogarten, J. P. (1991).Trends Biochem. Sci. 16, 287–288.

    Article  CAS  PubMed  Google Scholar 

  • Maras, B., Consalvi, V., Chiaraluce, R., Politi, L., De Rosa, M., Bossa, F., Scandurra, R., and Barra, D. (1992).Eur. J. Biochem. 203, 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Menéndez-Arias, J., and Argos, P. (1989).J. Mol. Biol. 206, 397–406.

    Article  PubMed  Google Scholar 

  • Minami, Y., Wakabayashi, S., Wada, K., Matsubara, H., Kerscher, L., and Oesterhelt, D. (1985).Eur. J. Biochem. 202, 1189–1196.

    Google Scholar 

  • Mozhaev, V. V. (1993).Tibtech 11, 88–95.

    Article  CAS  Google Scholar 

  • Nosoh, Y., and Sekiguchi, T. (1988).Biocatalysis 1, 257–273.

    Article  Google Scholar 

  • Robb, F. T., Park, J. B., and Adams, W. W. (1992).Biochem. Biophys. Acta 1120, 267–272.

    CAS  PubMed  Google Scholar 

  • Schultes, V., Deutzmann, R., and Jaenicke, R. (1990).Eur. J. Biochem. 192, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Smith, E. L., Austen, B. M., Blumenthal, K. M., and Nyc, J. F. (1975).The Enzymes (Boyer, P. D., ed.), 3rd ed., Vol. 11, Academic Press, New York, pp. 296–367.

    Google Scholar 

  • Tomschy, A., Glockshuber, R., and Jaenicke, R. (1993).Eur. J. Biochem. 214, 43–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maras, B., Valiante, S., Chiaraluce, R. et al. The amino acid sequence of glutamate dehydrogenase fromPyrococcus furiosus, a hyperthermophilic archaebacterium. J Protein Chem 13, 253–259 (1994). https://doi.org/10.1007/BF01891983

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01891983

Key words

Navigation