Skip to main content
Log in

Hydraulic conductivity ofNitella cells using the intracellular perfusion technique

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The hydraulic conductivity of the intracellularly-perfused internodal cell ofNitella flexilis was measured by establishing and maintaining osmotic and hydrostatic pressure gradients between the inside and the outside of the cell. The osmotic filtration coefficient (L PD ) determined at zero hydrostatic pressure difference varied between 1.55 and 2.32×10−5 cm/sec/atm. Under internal perfusion conditions no polarity between endosmotic and exosmotic flow was observed. The overall hydrostatic filtration coefficient (L P ) was determined with a step change in hydrostatic pressure up to 0.2 atm, while the osmotic pressure difference was maintained at zero.L P was considerably greater than theL PD , i.e., 14.1 to 19.2×10−5 cm/sec/atm. Theoverall L P of such internodes, which showed protoplasmic streaming and action potentials was the same as that of the isolated cell walls, the latter being 13.2 to 19.9×10−5 cm/sec/atm. Some of these results are consistent with previous results onNitella using different techniques. The situation inNitella where at abnormallylow internal pressure the barrier to hydrostatic pressure-driven water flow does not reside in the plasmalemma but in an in-series structure is comparable to that in the squid axon where the normal internal pressure is close to zero. An interpretation is offered for the finding in the alga that athigh internal pressures the plasmalemma becomes the rate-limiting structure for hydrostatic pressure-driven water flow. It is suggested that the internal pressure pushes a large fraction of the plasmalemma against skeletal nonporous regions of the cell wall. This suggestion entailing a pressure-dependent cell wall-plasmalemma juxtaposition was also deployed in interpreting previous observations in plant cells on water flow polarity (i.e., observations showing that exosmotic rates are less than endosmotic).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dainty, J. 1969. The water relations of plants.In: The Physiology of Plant Growth and Development. M.B. Wilkins, editor. p. 421–452. MacGraw Hill, London

    Google Scholar 

  • Dainty, J., Ginsburg, B.Z. 1964. The measurement of hydraulic conductivity (osmotic permeability to water) of internodal characean cells by means of transcellular osmosis.Biochim. Biophys. Acta 79:102–111

    Google Scholar 

  • Dainty, J., Hope, A.B. 1959a. The water permeability of cells ofChara australis.Aust. J. Biol. Sci. 12:136–145

    Google Scholar 

  • Dainty, J., Hope, A.B. 1959b. Ionic relations of cells ofChara australis: I. Ion exchange, in the cell wall.Aust. J. Biol. Sci. 12:395–411

    Google Scholar 

  • Green, P.B. 1958. Structural characteristics of developingNitella internodal cell walls.J. Biophys. Biochem. Cytol. 4:505–516

    Google Scholar 

  • Gutknecht, J. 1967. Membranes ofValonia centricosa: Apparent absence of water filled pores.Science 158:787–788

    Google Scholar 

  • Gutknecht, J. 1968. Permeability ofValonia to water and solutes: Apparent absence of aqueous membrane pores.Biochim. Biophys. Acta 163:20–29

    Google Scholar 

  • Kamiya, N., Tazawa, M. 1956. Studies of water permeability of a single plant cell by means of transcellular osmosis.Protoplasma 46:394–422

    Google Scholar 

  • Kamiya, N., Tazawa, M., Takata, T. 1962. Water permeability ofNitella cell wall.Plant Cell Physiol. 3:285–292

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1958. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochim. Biophys. Acta 27:229–246

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1963. Permeability of composite membranes.Trans. Faraday Soc 59:1941–1953

    Google Scholar 

  • Kelly, R.B., Kohn, P.G., Dainty, J. 1963. Water relations, ofNitella translucens.Trans. Proc. Bot. Soc. Edin34:373–391

    Google Scholar 

  • Kikuyama, M., Tazawa, M. 1976a. Tonoplast action potential in relation to vacuolar chloride concentration.J. Membrane Biol. 29:95–110

    Google Scholar 

  • Kikuyama, M., Tazawa, M., 1976b. Characteristics of the vacuolar membrane ofNitella.J. Membrane Biol. 30:225–247

    Google Scholar 

  • Kiyosawa, K., Tazawa, M. 1972. Influence of intracellular and extracellular tonicities on water permeability on characean cells.Protoplasma 74:257–270

    Google Scholar 

  • Kiyosawa, K., Tazawa, M. 1973. Rectification characteristics ofNitella membranes in respect to water permeability.Protoplasma 78:203–214

    Google Scholar 

  • Kiyosawa, K., Tazawa, M. 1977. Hydraulic conductivity of tonoplast-freeChara cell.J. Membrane Biol. 37:157–166

    Google Scholar 

  • Osterhout, W.J.V. 1949. Movements of water in cells ofNitella.J. Gen. Physiol. 32:533–557

    Google Scholar 

  • Palta, J.P., Stadelman, E.J. 1977. Effect of turgor pressure on water permeability ofAllium cepa epidermis cell membranes.J. Membrane Biol. 33:231–247

    Google Scholar 

  • Palta, J.P., Stadelman, E.J. 1978.Letters to Editor.J. Membrane Biol. 41:90–91

    Google Scholar 

  • Palva, P. 1939. Die wasserpermeabilität der Zellen von Tolypellopsis stelligera.Protoplasma 32:265–271

    Google Scholar 

  • Preston, R.D. 1974. The Physical Biology of Plant Cell Walls. Chapman and Hall, London

    Google Scholar 

  • Probine, M.C., Preston, R.D. 1961. Cell growth and the structure and mechanical properties of the wall internodal cells ofNitella opaca: I. Wall structure and growth.J. Exp. Bot. 12:261–282

    Google Scholar 

  • Shimmen, T., Kikuyama, M., Tazawa, M. 1976. Demonstration of two stable potential states of plasmolemma of Chara without tonoplast.J. Membrane Biol. 30:249–270

    Google Scholar 

  • Shimmen, T., Tazawa, M. 1977. Control of membrane potential and excitability ofChara cells with ATP and Mg2+.J. Membrane Biol. 37:167–192

    Google Scholar 

  • Spyropoulos, C.S. 1977a. Water fluxes in nerve fiber.J. Membrane Biol. 32:1–18

    Google Scholar 

  • Spyropoulos, C.S. 1977a. Osmotic relations of nerve fiber.J. Membrane Biol. 32:19–32

    Google Scholar 

  • Spyropoulos, C.S. 1979. Cytoplasmic gel and water relations of axon.J. Membrane Biol. 47:195–238

    Google Scholar 

  • Spyropoulos, C.S. 1980. Movement of water in squid axon andNitella internode.Upsala. J. Med. Sci. 85:225–230

    Google Scholar 

  • Stadelman, E. 1966. Evaluation of turgidity, plasmolysis and deplasmolysis of plant cells.In. Methods in Cell Physiology. D.M. Prescott, editor. Vol. 2, pp 143–216, Academic Press, New York

    Google Scholar 

  • Steudle, E., Zimmermann, N. 1974. Determination of the hydraulic conductivity and of reflection coefficients inNitella flexilis by means of direct cell-turgor pressure measurements.Biochim. Biophys. Acta 332:399–412

    Google Scholar 

  • Steudle, E., Zimmermann, U. 1978.Letters to the Editor.J. Membrane Biol. 41:86–89

    Google Scholar 

  • Strunk, T.H., 1970. Vacuolar perfusion technique forNitella internodal cells.Science 169:84–87

    Google Scholar 

  • Tazawa, M. 1964. Studies onNitella having artificial sap: I. Replacement of the cell sap with artificial solutions.Plant Cell Physiol. 5:33–43

    Google Scholar 

  • Tazawa, M., Kamiya, N. 1965. Water relations of characean internodal cell.Annu. Rep. Biol. Works Fac. Sci. Osaka Univ. 13:123–157

    Google Scholar 

  • Tazawa, M., Kamiya, N. 1966. Water permeability of a characean internodal cell with, special reference to its polarity.Aust. J. Biol. Sci. 19:399–419

    Google Scholar 

  • Tazawa, M., Kikuyama, M., Nakagawa, S. 1975. Open-vacuole method for measuring membrane resistance of characeae cells.Plant Cell Physiol. 16:611–621

    Google Scholar 

  • Tazawa, M., Kikuyama, M., Shimmen, T. 1976. Electric characteristics and cytoplasmic streaming of characeae cells lacking tonoplast.Cell Struct. Funct. 1:165–176

    Google Scholar 

  • Tazawa, M., Kishimoto, U., Kikuyama, M. 1974. Potassium, sodium and chloride in the protoplasm of characeae.Plant Cell Physiol. 15:103–110

    Google Scholar 

  • Tazawa, M., Kiyosawa, K. 1973. Analysis of transcellular water movement inNitella, a new procedure to determine the inward and outward permeabilities of membranes.Protoplasma 78:349–364

    Google Scholar 

  • Tyree, M.T. 1968. Determination of transport constants of isolatedNitella cell walls.Can. J. Bot. 46:317–327

    Google Scholar 

  • Vargas, F.F. 1968. Filtration coefficients of the axon membrane as measured by hydrostatic and osmotic methods.J. Gen. Physiol. 51:13–27

    Google Scholar 

  • Villegas, R., Villegas, G.M. 1960. Membranes in nerve fiber of squid.J. Gen. Physiol. 43:73–96

    Google Scholar 

  • Zimmermann, U., Steudle, E. 1974. The pressure dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation inValonia Utricularis.J. Membrane Biol. 16:331–352

    Google Scholar 

  • Zimmermann, U., Steudle, E. 1975,. The hydraulic conductivity and volumetric elastic modulus of cells and isolated cell walls ofNitella andChara: Pressure and volume effects.Aust. J. Plant Physiol 2:1–12

    Google Scholar 

  • Zimmermann, U., Steudle, E. 1978. Physical aspects of water relations of plant cells.Adv. Bot. Res. 6:45–117

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spyropoulos, C.S. Hydraulic conductivity ofNitella cells using the intracellular perfusion technique. J. Membrain Biol. 76, 17–26 (1983). https://doi.org/10.1007/BF01871451

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871451

Key Words

Navigation