Skip to main content
Log in

A cation channel in frog lens epithelia responsive to pressure and calcium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Patch-clamp recording from the apical surface of the epithelium of frog lens reveals a cation-selective channel after pressure (about ±30 mm Hg) is applied to the pipette. The open state of this channel has a conductance of some 50 pS near the resting potential (−56.1±2.3 mV) when 107mm NaCl and 10 HEPES (pH 7.3) is outside the channel. The probability of the channel being open depends strongly on pressure but the current-voltage relation of the open state does not. With minimal Ca2+ (55±2 μm) outside the channel, the current-voltage relation is nonlinear even in symmetrical salt solutions, allowing more current to flow into the cell than out. The channel, in minimal Ca2+ solution, is selective among the monovalent cations in the following sequence K+>Rb+>Cs+>Na+>Li+. The conductance depends monotonically on the mole fraction of K+ when the other ion present is Li+ or Na+. The single-channel current is a saturating function of [K+] when K+ is the permeant ion, for [K+]≤214mm. When [Ca2+]=2mm, the currentvoltage relation is linearized and the channel cannot distinguish Na+ and K+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alcala, J., Maisel, H. 1985. Biochemistry of lens plasma membranes and cytoskeleton.In: The Ocular Lens. H. Maisel, editor. pp. 169–222. Marcel Dekker, New York

    Google Scholar 

  • Brehm, P., Kullberg, R., Moody-Corbett, F. 1984. Properties of non-junctional acetylcholine receptor channels on innervated muscle ofXenopus laevis.J. Physiol. (London) 350:631–648

    Google Scholar 

  • Cecchi, X., Latorre, R., Alvarez, O. 1984. Alkali metal ion selectivity of the hemocyanin channel.J. Membrane Biol. 77:277–283

    Google Scholar 

  • Cooper, K.E., Tang, J.M., Rae, J.L., Eisenberg, R.S. 1985. Cation-selective channel in the epithelium of frog lens.J. Gen. Physiol. 86:9a

    Google Scholar 

  • Corcia, A., Babila, T. 1985. Voltage induced channel-like activity in pure lipid bilayer membranes.Biophys. J. 47:141a

    Google Scholar 

  • Draper, N.R., Smith, H. 1966. Applied Regression Analysis. John Wiley & Sons, New York

    Google Scholar 

  • Eisenman, G., Horn, R. 1983. Ionic selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels.J. Membrane Biol. 76:197–225

    Google Scholar 

  • Fatt, P., Ginsborg, B.L. 1958. The ionic requirements for the production of action potentials in crustacean muscle fibres.J. Physiol. (London) 142:516–543

    Google Scholar 

  • Guharay, F., Sachs, F. 1984. Stretch-activation single ion channel currents in tissue-cultured embryonic chick skeletal muscle.J. Physiol. (London) 352:695–701

    Google Scholar 

  • Guharay, F., Sachs, F. 1985. Mechanotransducer ion channels in chick skeletal muscle: The effects of extracellular pH.J. Physiol. (London) 363:119–134

    Google Scholar 

  • Hess, P., Lansman, J.B., Tsien, R.W. 1984. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists.Nature (London) 311:538–544

    Google Scholar 

  • Hille, B. 1984. Ionic Channels of Excitable Membranes. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Hadky, S.B., Haydon, D.A. 1984. Ion movements in gramicidin channels.Curr. Top. Membr. Transp. 21:327–372

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952. Currents carried by sodium and potassium ions through the membrane of the giant axon ofLoligo.J. Physiol. (London) 116:449–472

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Hogan, M.J., Alvarado, J.A., Weddell, J.E. 1971. Histology of the Human Eye. W.B. Saunders, Philadelphia

    Google Scholar 

  • Horn, R., Vandenberg, C.A. 1984. Statistical properties of single sodium channels.J. Gen. Physiol. 84:505–534

    Google Scholar 

  • Jacob, T.J.C., Bangham, J.A., Duncan, G. 1985. Characterization of a cation channel on the apical surface of the frog lens epithelium.Quart. J. Exp. Physiol. 70:403–421

    Google Scholar 

  • Kaplan, J.H. 1985. Ion movements through the sodium pump.Annu. Rev. Physiol. 47:535–544

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate theory analysis.Biochim. Biophys. Acta 311:423–441

    Google Scholar 

  • Läuger, P. 1985. Structural fluctuations and current noise of ionic channels.Biophys. J. 48:369–373

    Google Scholar 

  • Lecar, H., Sachs, F. 1981. Membrane Noise Analysis.In: Excitable Cells in Tissue Culture. M. Liberman and P.G. Nelson, editors. pp. 137–172. Plenum, New York

    Google Scholar 

  • Lotus 1–2–3. Reference Manual. 1985. Lotus Development Corporation, Cambridge, MA

  • Lüttgau, H.C., Spiecker, W. 1979. The effects of calcium deprivation upon mechanical and electrophysiological parameters in skeletal muscle fibres of the frog.J. Physiol. (London) 296:411–429

    Google Scholar 

  • Magleby, K.L., Pallotta, B.S. 1983. Calcium dependence of open and shut interval distributions from calcium-activated potassium channels in cultured rat muscle.J. Physiol. (London) 344:585–604

    Google Scholar 

  • Mathias, R.T. 1985. Steady-state voltages, ion fluxes, and volume regulation in syncytial tissues.Biophys. J. 48:435–448

    Google Scholar 

  • Mathias, R.T., Rae, J.L., Eisenberg, R.S. 1979. Electrical properties of structural components of the crystalline lens.Biophys. J. 25:181–201

    Google Scholar 

  • McCleskey, E.W., Almers, W. 1985. The Ca Channel in skeletal muscle is a large pore.Proc. Natl. Acad. Sci. USA 82:7149–7153

    Google Scholar 

  • Moisescu, D.G., Pusch, H. 1975. A pH-metric method for the determination of the relative concentration of calcium to EGTA.Pfluegers Arch. 355:243

    Google Scholar 

  • Ottoson, D. 1983. Physiology of the Nervous System. Oxford University Press, New York

    Google Scholar 

  • Paterson, C.A. 1972. Distribution and movement of ions in the ocular lens.Documenta Ophthal. 31:1–28

    Google Scholar 

  • Peng, H.B., Nakajima, Y. 1978. Membrane particle aggregates in innervated and noninnvervated cultures of Xenopus embryonic muscle cells.Proc. Natl. Acad. Sci. USA 75:500–504

    Google Scholar 

  • Rae, J.L. 1985. The application of patch clamp methods to ocular epithelia.Curr. Eye. Res. 4:409–420

    Google Scholar 

  • Rae, J.L., Kuszak, J.R. 1983. The electrical coupling of epithelium and fibers in the frog lens.Exp. Eye Res. 36:317–326

    Google Scholar 

  • Rae, J.L., Levis, R.A. 1984a. Patch voltage clamp of lens epithelial cells: Theory and practice.Mol. Physiol. 6:115–162

    Google Scholar 

  • Rae, J.L., Levis, R.A. 1984b. Patch clamp recordings from the epithelium of the lens obtained using glasses selected for low noise and improved sealing properties.Biophys. J. 45:144–146

    Google Scholar 

  • Rae, J.L., Mathias, R.T. 1985. The physiology of the lens.In: The Ocular Lens. H. Maisel, editor. pp. 93–121, Marcel Dekker, New York

    Google Scholar 

  • Richardson, J.S. 1981. The anatomy and taxonomy of protein structure.Adv. Protein Chem. 34:167–339

    Google Scholar 

  • Sachs, F., Neil, J., Barkakati, N. 1982. The automated analysis of data from single ionic channels.Pfluegers Arch 395:331–340

    Google Scholar 

  • Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K., Numa, S. 1985. Role of acetylcholine receptor subunits in gating of the channel.Nature (London) 318:538–543

    Google Scholar 

  • Schauf, C.L., Chuman, M.A. 1986. Mechanisms of sodium channel gating revealed by solvent substitution.In: Ion Channels in Neural Membranes. J.M. Ritchie, R.D. Keynes, and L. Bolis, editors. pp. 3–24. Alan R. Liss, New York

    Google Scholar 

  • Sigurdson, W.J., Morris, C.E. 1986. Stretch-activation of a K-channel in snail heart cells.Biophys. J. 49:163a

    Google Scholar 

  • Spalding, B.C., Senyk, O., Swift, J.G., Horowicz, P. 1981. Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle.Am. J. Physiol. 241:C68-C75

    Google Scholar 

  • Urban, B.W., Hladky, S.B. 1979. Ion transport in the simplest single file pore.Biochim. Biophys. Acta 554:410–429

    Google Scholar 

  • Van Driessche, W., Zeiske, W. 1985. Ionic channels in epithelial cell membranes.Physiol. Rev. 65:833–903

    Google Scholar 

  • Yang, X.C., Guharay, F., Sachs, F. 1986. Mechanotransducing ion channels: Ionic selectivity and coupling to visoelastic components of the cytoskeleton.Biophys. J. 49:373a

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, K.E., Tang, J.M., Rae, J.L. et al. A cation channel in frog lens epithelia responsive to pressure and calcium. J. Membrain Biol. 93, 259–269 (1986). https://doi.org/10.1007/BF01871180

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871180

Key Words

Navigation