Skip to main content
Log in

H+/ATP stoichiometry for the gastric (K++H+)-ATPase

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The initial rate of ATP-dependent proton uptake by hog gastric vesicles was measured at pH's between 6.1 and 6.9 by measuring the loss of protons from the external space with a glass electrode. The apparent rates of proton loss were corrected for scalar proton production due to ATP hydrolysis. For vesicles in 150mm KCl and pH 6.1, corrected rates of proton uptake and ATP hydrolysis were 639±84 and 619±65 nmol/min×mg protein, respectively, giving an H+/ATP ratio of 1.03±0.7. Furthermore, at all pH's tested the ratio of the rate of proton uptake to the rate of ATP hydrolysis was not significantly different than 1.0. No proton uptake (<10 nmol/min×mg protein) was exhibited by vesicles in 150mm NaCl at pH 6.1 despite ATP hydrolysis of 187±46 nmol/min×mg (nonproductive hydrolysis). Comparison of the rates of proton transport and ATP hydrolysis in various mixture of KCl and NaCl showed that the H+/ATP stoichiometries were not significantly different than 1.0 at all concentrations of K+ greater than 10mm. This fact suggests that the nonproductive rate is vanishingly small at these concentrations, implying that the measured H+/ATP stoichiometry is equal to the enzymatic stoichiometry. This result shows that the isolated gastric (K++H+)-ATPase is thermodynamically capable of forming the observed proton gradient of the stomach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberty, R.A. 1968. Effect of pH and metal ion concentration on the equilibrium hydrolysis of adenosine triphosphate to adenosine diphosphate.J. Biol. Chem. 243:1337–1343

    Google Scholar 

  2. Canosa, C.A., Rehm, W. 1968. Microelectrode studies of dog's gastric mucosa.Biophys. J. 8:415–430

    Google Scholar 

  3. Chang, H., Saccomani, G., Rabon, E., Schackmann, R., Sachs, G. 1977. Proton transport by gastric membrane vesicles.Biochim. Biophys. Acta 464:313–327

    Google Scholar 

  4. Davenport, H. 1969. Physiology of the Digestive Tract. p. 111. Yearbook Medical Publishers, Chicago

    Google Scholar 

  5. Durbin, R.P., Michelangeli, F., Nickel, A. 1974. Active transport and ATP in frog gastric mucosa.Biochim. Biophys. Acta 367:177–189

    Google Scholar 

  6. Forte, J.G., Adams, P.H., Davies, R.E. 1963. Source of the gastric mucosal potential difference.Nature (London) 197:874–876

    Google Scholar 

  7. Forte, J.G., Forte, T.M., Saltman, P. 1967. K+-stimulated phosphatase of microsomes from mucosa.J. Cell Physiol. 69:293–304

    Google Scholar 

  8. Forte, J.G., Ganser, A.L., Beesley, R., Forte, T.M. 1975. Unique enzymes of purified microsomes from pig fundic mucosa.Gastroenterology 69:175–189

    Google Scholar 

  9. Forte, J.G., Ganser, A.L., Ray, T.K. 1976. The K+-stimulated ATPase from oxyntic glands of gastric mucosa.In Gastric Hydrogen Ion Secretion. D.K. Kasbekar, G. Sachs, and W. Rehm, editors. pp. 302–330. Marcel Dekker; New York

    Google Scholar 

  10. Forte, J.G., Lee, H.C. 1977. Gastric adenosine triphosphatases: A review of their possible role in HCl secretion.Gastroenterology 73:921–926

    Google Scholar 

  11. Forte, J.G., Machen, T.E., Obrink, K.J. 1980. Mechanisms of gastric H+ and Cl transport.Annu. Rev. Physiol. 42:111–126

    Google Scholar 

  12. Ganser, A.L., Forte, J.G. 1973. K+-stimulated ATPase in purified microsomes of bullfrog oxyntic cells.Biochim. Biophys. Acta 307:169–180

    Google Scholar 

  13. Guynn, R.W., Veech, R.L. 1973. The equilibrium constants of the adenosine triphosphate hydrolysis and the adenosine triphosphate-citrate lyase reactions.J. Biol. Chem. 248:6966–6972

    Google Scholar 

  14. Kidder, G.W., III. 1980. Theories on gastric acid secretion.Ann. N.Y. Acad. Sci. 341:259–273

    Google Scholar 

  15. Lee, H.C., Breibart, H., Berman, M., Forte, J.G. 1979. Potassium-stimulated ATPase activity and hydrogen transport in gastric microsomal vesicles.Biochim. Biophys. Acta 553:107–131

    Google Scholar 

  16. Lee, H.C., Breitbart, H., Forte, J.G. 1980. The functional role of K+ ATPase in proton transport by gastric microsomal vesicles.Ann. N.Y. Acad. Sci. 341:297–311

    Google Scholar 

  17. Lee, H.C., Forte, J.G. 1978. A study of H+ transport in gastric microsomal vesicles using fluorescent probes.Biochim. Biophys. Acta 508:339–356

    Google Scholar 

  18. Lee, J., Simpson, G., Scholes, P. 1974. An ATPase from dog gastric mucosa: Changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis.Biochem. Biophys. Res. Commun. 60:825–832

    Google Scholar 

  19. Limlomwongse, L., Forte, J.G. 1970. Developmental changes in ATPase and K+-stimulated phosphatase of tadpole gastric microsomes.Am. J. Physiol. 219:1717–1722

    Google Scholar 

  20. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  21. Rabon, E., Chang, H., Sachs, G. 1978. Quantitation of hydrogen ion and potential gradients in gastric plasma membrane vesicles.Biochemistry 17:3345–3353

    Google Scholar 

  22. Ray, T.K., Forte, J.G. 1976. Studies on the phosphorylated intermediate of K+-stimulated ATPase from rabbit gastric mucosa.Biochim. Biophys. Acta 306:169–180

    Google Scholar 

  23. Saccomani, G., Stewart, H.B., Shaw, D., Lewin, M., Sachs, G. 1977. Characterization of gastric mucosal membranes. IX. Fractionation and purification of K+-ATPase-containing vesicles by zonal centrifugation and free-flow electrophoresis technique.Biochim. Biophys. Acta 465:311–330

    Google Scholar 

  24. Sachs, G., Chang, H.H., Rabon, E., Schackmann, R., Lewin, M., Saccomani, G. 1976. A nonelectrogenic H+ pump in plasma membranes of hog stomach.J. Biol. Chem. 251:7690–7698

    Google Scholar 

  25. Sanui, H. 1974. Measurement of inorganic orthophosphate in biological materials: Extraction properties of butyl acetate.Anal. Biochem. 60:489–504

    Google Scholar 

  26. Schackmann, R., Schwartz, A., Saccomani, G., Sachs, G. 1977. Cation transport by gastric H+∶K+ ATPase.J. Membrane Biol. 32:361–381

    Google Scholar 

  27. Villegas, L. 1962. Cellular location of the electrical potential difference in frog gastric mucosa.Biochim. Biophys. Acta 64:359–367

    Google Scholar 

  28. Wallmark, B., Mardh, S. 1979. Phosphorylation and dephosphorylation kinetics of potassium-stimulated ATP phosphohydrolase from hog gastric mucosa.J. Biol. Chem. 254:11899–11902

    Google Scholar 

  29. Wallmark, B., Stewart, H.B., Rabon, E., Saccomani, G., Sachs, G. 1980. The catalytic cycle of gastric (H++K+)-ATPase.J. Biol. Chem. 255:5313–5319

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reenstra, W.W., Forte, J.G. H+/ATP stoichiometry for the gastric (K++H+)-ATPase. J. Membrain Biol. 61, 55–60 (1981). https://doi.org/10.1007/BF01870752

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870752

Key words

Navigation