Skip to main content
Log in

Pathways for movement of ions and water across toad urinary bladder

III. Physiologic significance of the paracellular pathway

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Hypertonicity of the mucosal bathing medium increases the electrical conductance of toad urinary bladder by osmotic distension of the epithelial “tight” or limiting junctions. However, toad urine is not normally hypertonic to plasma. In this study, the transmural osmotic gradient was varied strictly within the physiologic range; initially hypotonic mucosal bathing media were made isotonic by addition of a variety of solutes. Mucosal NaCl increased tissue conductance substantially. This phenomenon could not have reflected solely an altered conductance of the transcellular active transport pathway since mucosal KCl also increased tissue conductance, whether or not Na+ was present in the bathing media. The effect of mucosal NaCl could not have been mediated solely by a parallel transepithelial pathway formed by damaged tissue since mucosal addition of certain nonelectrolytes also increased tissue conductance. Finally, the osmotically-induced increase in conductance could not have occurred solely in transcellular transepithelial channels in parallel with the active pathway for Na+, since the permeability to22Na from serosa to mucosa (s tom) was also increased by mucosal addition of NaCl; a number of lines of evidence suggest thats-to-m movement of Na+ proceeds largely through paracellular transepithelial pathways. The results thus establish that the permeability of the limiting junctions is physiologically dependent on the magnitude of the transmural osmotic gradient. A major role is proposed for this mechanism, serving to conserve the body stores of NaCl from excessive urinary excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, B., Ussing, H.H. 1957. Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone.Acta Physiol. Scand. 39:228

    PubMed  Google Scholar 

  • Bentley, P.J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317

    Google Scholar 

  • Boulpaep, E.L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Am. J. Physiol. 222:517

    PubMed  Google Scholar 

  • Canessa, M., Labarca, P., Leaf, A. 1976. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.J. Membrane Biol. 30:65

    Google Scholar 

  • Chen, J.S., Walser, M. 1976. Effect of transepithelial concentration gradients on the passive fluxes of sodium across toad bladder.J. Membrane Biol. 37:381

    Google Scholar 

  • Civan, M.M. 1970. Effects of active sodium transport on the current-voltage relationship of toad bladder.Am. J. Physiol. 219:234

    PubMed  Google Scholar 

  • Civan, M.M., Di Bona, D.R. 1974. Pathways for movement of ions and water across toad urinary bladder: II. Site and mode of action of vasopressin.J. Membrane Biol. 19:195

    Google Scholar 

  • Civan, M.M., Kedem, O., Leaf, A. 1966. Effect of vasopressin on toad bladder under conditions of zero net sodium transport.Am. J. Physiol. 211:569

    PubMed  Google Scholar 

  • Coplon, N.S., Maffly, R.H. 1972. The effect of ouabain on sodium transport and metabolism of the toad bladder.Biochim. Biophys. Acta 282:250

    PubMed  Google Scholar 

  • Davies, H.E.F., Martin, D.G., Sharp, G.W.G. 1968. Differences in the physiological characteristics of bladders from different geographical sources.Biochim. Biophys. Acta 150:315

    PubMed  Google Scholar 

  • DiBona, D.R. 1972. Passive pathways in amphibian epithelia: Morphologic evidence for an intercellular route.Nature New Biol. 238:179

    PubMed  Google Scholar 

  • DiBona, D.R., Civan, M.M. 1972a. Clarification of the intercellular space phenomenon in toad urinary bladder.J. Membrane Biol. 7:267

    Google Scholar 

  • DiBona, D.R., Civan, M.M. 1972b. Osmotically-induced conductance changes in toad urinary bladder under physiologic conditions.Abstr. IXth Intern. Biophys. Cong. Moscow, USSR

  • DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder: I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101

    Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969a. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell Biol. 40:1

    PubMed  Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969b. The cellular specificity of the effect of vasopressin on toad urinary bladder.J. Membrane Biol. 1:79

    Google Scholar 

  • Dobson, J.G., Kidder, G.W., III. 1968. Edge damage effect inin vitro frog skin preparations.Am. J. Physiol. 214:719

    PubMed  Google Scholar 

  • Farquhar, M., Palade, G.E. 1963. Junctional complexes in various epithelia.J. Cell Biol. 17:375

    PubMed  Google Scholar 

  • Farquhar, M., Palade, G.E. 1965. Cell junctions in amphibian skin.J. Cell Biol. 26:263

    PubMed  Google Scholar 

  • Finkelstein, A., Mauro, A. 1963. Equivalent circuits as related to ionic systems.Biophys. J. 3:215

    Google Scholar 

  • Finn, A.L., Handler, J.S., Orloff, J. 1967. Active chloride transport in the isolated toad bladder.Am. J. Physiol. 213:179

    PubMed  Google Scholar 

  • Frazier, H.S., Leaf, A. 1964. Cellular mechanisms in the control of body fluids.Medicine 43:281

    PubMed  Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:218

    Google Scholar 

  • Frömter, E., Diamond, J. 1972. Route of passive ion permeation in epithelia.Nature (London) 235:9

    Google Scholar 

  • Ganong, W.F., Mulrow, P.J. 1958. Rate of change in sodium and potassium excretion after injection of aldosterone into the aorta and renal artery of the dog.Am. J. Physiol. 195:337

    PubMed  Google Scholar 

  • Grandchamp, A., Boulpaep, E.L. 1974. Pressure control of sodium reabsorption and intercellular backflux across proximal tubule.J. Clin. Invest. 54:69

    PubMed  Google Scholar 

  • Hays, R.M. 1972. The movement of water across vasopressin-sensitive epithelia.Current Topics in Membranes and Transport 3:339

    Google Scholar 

  • Helman, S.I., Miller, D.A. 1971. In vitro techniques for avoiding edge damage in studies of frog skin.Science 173:146

    PubMed  Google Scholar 

  • Higgins, J.T., Jr., Cesaro, L., Gebler, B., Frömter, E. 1975. Electrical properties of amphibian urinary bladder epithelia: I. Inverse relationship between potential difference and resistance in tightly mounted preparations.Pfluegers Arch. 358:4

    Google Scholar 

  • Hong, C.D., Essig, A. 1976. Effects of 2-deoxy-d-glucose, amiloride, vasopressin, and ouabain on active conductance andE Na in the toad bladder.J. Membrane Biol. 28:121

    Google Scholar 

  • Leaf, A., Anderson, J., Page, L.B. 1958. Active sodium transport by the isolated toad bladder.J. Gen. Physiol. 41:657

    PubMed  Google Scholar 

  • Leaf, A., Hays, R.M. 1962. Permeability of the isolated toad bladder to solutes and its modification by vasopressin.J. Gen. Physiol. 45:921

    PubMed  Google Scholar 

  • Levine, S., Franki, N., Hays, R.M. 1973. Effect of phloretin on water and solute movement in the toad bladder.J. Clin. Invest. 52:1435

    PubMed  Google Scholar 

  • Lewis, S.A., Diamond, J.M. 1976. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1

    Google Scholar 

  • Macknight, A.D.C. 1977. The contribution of mucosal chloride to chloride in toad bladder epithelial cells.J. Membrane Biol. 36:55

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365

    Google Scholar 

  • Peachey, L.D., Rasmussen, H. 1961. Structure of the toad's urinary bladder as related to its physiology.J. Biophys. Biochem. Cytol. 10:529

    PubMed  Google Scholar 

  • Rawlins, F.A., González, E., Pérez-González, M., Whittembury, G. 1975. Effect of transtubular osmotic gradients on the paracellular pathway in toad proximal tubule: Electron microscopic observations.Pfluegers Arch. 353:287

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975. Effects of changes in the composition of the mucosal solution on the electrical properties of the toad urinary bladder epithelium.J. Membrane Biol. 20:191

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976a. Relationships between serosal medium potassium concentration and sodium transport in toad urinary blader: I. Effects of different medium potassium concentrations on electrical parameters.J. Membrane Biol. 26:217

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976c. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: II. Effects of different medium potassium concentrations on epithelial cell composition.J. Membrane Biol. 26:239

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976c. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1968. Electrolyte Solutions (2nd Ed., revised). Butterworth, London

    Google Scholar 

  • Saito, T., Lief, P.D., Essig, A. 1974. Conductivity of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265

    PubMed  Google Scholar 

  • Sawyer, W. H. 1956. The antidiuretic action of neurohypophysial hormones in Amphibia.Proc. Symp. Colston Res. Soc. 8:171

    Google Scholar 

  • Seely, J.E. 1973. Effect of peritubular oncotic pressure on rat proximal tubule electrical resistance.Kidney Int. 4:28

    PubMed  Google Scholar 

  • Sharp, G.W.G., Coggins, C.H., Lichtenstein, N.S., Leaf, A. 1966. Evidence for a mucosal effect of aldosterone on sodium transport in the toad bladder.J. Clin. Invest. 45:1640

    PubMed  Google Scholar 

  • Siegel, B., Civan, M.M. 1976. Aldosterone and insulin effects on the driving force of the Na+-pump in toad bladder.Am. J. Physiol. 230:1603

    PubMed  Google Scholar 

  • Using, H.H. 1949. The distinction by means of tracers between active transport and diffusion.Acta Physiol. Scand. 19:43

    Google Scholar 

  • Ussing, H.H. 1963. Effects of hypertonicity produced by urea on active transport and passive diffusion through the isolated frog skin.Acta Physiol. Scand. 59 (Suppl. 213):155

    Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484

    PubMed  Google Scholar 

  • Wade, J.B., Revel, J.P., DiScala, V.A. 1973. Effect of osmotic gradients on intercellular junctions of the toad bladder.Am. J. Physiol. 224:407

    PubMed  Google Scholar 

  • Walser, M. 1970. Role of edge damage in sodium permeability of toad bladder and a means for avoiding it.Am. J. Physiol. 219:252

    PubMed  Google Scholar 

  • Walser, M. 1972. Components of sodium and chloride flux across toad bladder.Biophys. J. 12:351

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civan, M.M., DiBona, D.R. Pathways for movement of ions and water across toad urinary bladder. J. Membrain Biol. 38, 359–386 (1978). https://doi.org/10.1007/BF01870152

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870152

Keywords

Navigation