Skip to main content
Log in

Intracellular sodium activity and sodium transport inNecturus gallbladder epithelium

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ion-sensitive glass microelectrodes, conventional microelectrodes and isotope flux measurements were employed inNecturus gallbladder epithelium to study intracellular sodium activity, [Na] i , electrical parameters of epithelial cells, and properties of active sodium transport. Mean control values were: [Na] i : 9.2 to 12.1mm; transepithelial potential difference,Ψ ms : −1.5 mV (lumen negative); basolateral cell membrane potential,Ψ es : −62 mV (cell interior negative); sodium conductance of the luminal cell membrane,g Na: 12 μmho cm−2; active transcellular sodium flux, 88 to 101 pmol cm−2 sec−1 (estimated as instantaneous short-circuit current). Replacement of luminal Na by K led to a decrease of the intracellular sodium activity at a rate commensurate to the rate of active sodium extrusion across the basolateral cell membrane. Mucosal application of amphotericin B resulted in an increase of the luminal membrane conductance, a rise of intracellular sodium activity, and an increase of short-circuit current and unidirectional mucosa to serosa sodium flux. Conclusions: (i) sodium transport across the basolateral membrane can proceed against a steeper chemical potential difference at a higher rate than encountered under control conditions; (ii) the luminal Na-conductance is too low to accommodate sodium influx at the rate of active basolateral sodium extrusion, suggesting involvement of an electrically silent luminal transport mechanism; (iii) sodium entry across the luminal membrane is the rate-limiting step of transcellular sodium transport and active sodium extrusion across the basolateral cell membrane is not saturated under control conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoli, T.E., Dennis, V.W., Weigl, A.M. 1969. The effect of amphotericin B on the water and nonelectrolyte permeability of thin lipid membranes.J. Gen. Physiol. 53:133

    PubMed  Google Scholar 

  • Andreoli, T.E., Monahan, M. 1968. The interaction of polyene antibiotics with thin lipid membranes.J. Gen. Physiol. 52:300

    PubMed  Google Scholar 

  • Bentley, P. 1968. Action of amphotericin B on the toad bladder: Evidence for sodium transport along two pathways.J. Physiol. (London) 196:703

    Google Scholar 

  • Brown, K.T., Flaming, D.G. 1974. Beveling of fine micropipette electrodes by a rapid precision method.Science 185:693

    PubMed  Google Scholar 

  • Chen, L.C., Cuerrant, R.L., Rhode, J.E., Casper, A.G.T. 1973. Effect of amphotericin B on sodium and water movement across normal and cholera toxin-challenged canine jejunum.Gastroenterology 65:252

    PubMed  Google Scholar 

  • Cremaschi, D., Henin, S. 1975. Na+ and Cl transepithelial routes in rabbit gallbladder.Pfluegers Arch. 361:33

    Article  Google Scholar 

  • Cremaschi, D., Henin, S., Calvi, M. 1971a. Transepithelial potential difference induced by amphotericin B and NaCl−NaHCO3 pump localization in gallbladder.Arch. Int. Physiol. Biochem. 79:889

    Google Scholar 

  • Cremaschi, D., Henin, S., Calvi, M. 1971b. Inhibition of NaCl−NaHCO3 pump by high levels of Na+ salts in rabbit gallbladder epithelial cells.Atti Accad. Naz. Lincei Rend. 50:216

    Google Scholar 

  • Cremaschi, D., Henin, S., Meyer, G., Bacciola, T. 1977. Does amphotericin B unmask an electrogenic Na+ pump in rabbit gallbladder? Shift of gallbladders with negative to gallbladders with positive transepithelial p.d.'s.J. Membrane Biol. 34:55

    Google Scholar 

  • Desjeux, J.F., Tai, Y.H., Curran, P.F. 1974. Characteristics of sodium flux from serosa to mucosa in rabbit ileum.J. Gen. Physiol. 64:274

    PubMed  Google Scholar 

  • Diamond, J.M. 1962. The mechanism of solute transport by the gallbladder.J. Physiol. (London) 161:474

    Google Scholar 

  • Diamond, J.M. 1964. Transport of salt and water in rabbit and guinea pig gallbladder.J. Gen. Physiol. 48:1

    PubMed  Google Scholar 

  • Diamond, J.M. 1968. Transport mechanisms in the gallbladder.In: Handbook of Physiology: Alimentary Canal. Vol. 5, p. 2451. American Physiological Society, Washington

    Google Scholar 

  • Dietschy, J.M. 1964. Water and solute movement across the wall of the everted rabbit gallbladder.Gastroenterology 47:395

    PubMed  Google Scholar 

  • Frizzell, R.A., Dugas, M.C., Schultz, S.G. 1975. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process.J. Gen. Physiol. 65:769

    PubMed  Google Scholar 

  • Frizzell, R.A., Turnheim, K. 1978. Ion transport by rabbit colon: II. Unidirectional sodium influx and the effects of amphotericin B and amiloride.J. Membrane Biol. 40:193

    Google Scholar 

  • Fromm, M., Hegel, U., Beck, H., Weskamp, P. 1977. Effect of trypsin on DC and AC parameters ofNecturus gallbladder epithelium.Proc. Int. Union Physiol. Sci. 13:244

    Google Scholar 

  • Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  • Frömter, E., Diamond, J.D. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9

    Google Scholar 

  • Gelarden, R.T., Rose, R.C. 1974. Electrical properties and diffusion potentials in the gallbladder of man, monkey, dog, goose and rabbit.J. Membrane Biol. 19:37

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effects of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37

    Google Scholar 

  • Lee, C.O., Armstrong, W.McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261

    PubMed  Google Scholar 

  • Lewis, S.A., Eaton, D.C., Clausen, C., Diamond, J.M. 1977. Nystatin as a probe for investigating the electrical properties of a tight epithelium.J. Gen. Physiol. 70:427

    PubMed  Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117

    Google Scholar 

  • Lichtenstein, N.S., Leaf, A. 1965. Effect of amphotericin B on the permeability of the toad bladder.J. Clin. Invest. 44:1328

    PubMed  Google Scholar 

  • Os, C.H. van, Slegers, J.F.G. 1975. The electric potential profile of gallbladder epithelium.J. Membrane Biol. 24:341

    Google Scholar 

  • Reuss, L. 1978. Mechanism of transepithelial hyperpolarization produced by amphotericin B inNecturus gallbladder.Biophys. J. 21:168a

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975a. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions.J. Membrane Biol. 25:115

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975b. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141

    Google Scholar 

  • Reuss, L., Finn, A.L. 1977. Mechanisms of voltage transients during current clamp inNecturus gallbladder.J. Membrane Biol. 37:299

    Google Scholar 

  • Rose, R.C., Nahrwold, D.L. 1976. Electrolyte transport by gallbladders of rabbit and guinea pig: Effect of amphotericin B and evidence of rheogenic Na transport.J. Membrane Biol. 29:1

    Google Scholar 

  • Schultz, S.G., Zalusky, R. 1964. Ion transport in isolated rabbit ileum. I. Short circuit current and sodium fluxes.J. Gen. Physiol. 47:567

    PubMed  Google Scholar 

  • Spring, K., Giebisch, G. 1977. Kinetics of Na+ transport inNecturus proximal tubule.J. Gen. Physiol. 70:307

    PubMed  Google Scholar 

  • Suzuki, K., Frömter, E. 1977. The potential and resistance profile ofNecurus gallbladder cells.Pfluegers Arch. 371:109

    Google Scholar 

  • Thomas, R.C. 1972. Intracellular sodium activity and the sodium pump in snail neurons.J. Physiol. (London) 220:55

    Google Scholar 

  • Thomas, R.C. 1976. Construction and properties of recessed-tip microelectrodes for sodium and chloride ions and pH.In: Ion and Enzyme Electrodes in Biology and Medicine. M. Kessler, L.C. Clark, Jr., D.W. Lübbers, I.A. Silver and W. Simon, editors. pp. 141–148. Urban & Schwarzenberg, Munich-Berlin-Vienna

    Google Scholar 

  • Wheeler, H.O. 1963. Transport of electrolytes and water across the wall of rabbit gallbladder.Am. J. Physiol. 205:427

    PubMed  Google Scholar 

  • Wiederholt, M., Giebisch, G. 1974. Some electrophysiological properties of the distal tubule ofAmphiuma kidney.Fed. Proc. 33:387

    Google Scholar 

  • Wills, N., Lewis, S.A., Eaton, D.C. 1979. Active and passive properties of rabbit descending colon: A microelectrode and nystatin study.J. Membrane Biol. 45:137

    Google Scholar 

  • Zeuthen, T. 1976. Gradients of chemical and electrical potential in the gallbladder.J. Physiol. (London) 256:32P

    Google Scholar 

  • Zeuthen, T. 1977. Intracellular gradients of electrical potential in the epithelial cells of theNecturus gallbladder.J. Membrane Biol. 33:281

    Google Scholar 

  • Zeuthen, T., Monge, C. 1975. Intra- and extracellular gradients of electrical potential and ion activities of the epithelial cells of the rabbit ileumin vivo recorded by microelectrodes.Philos. Trans. R. Soc. (London) B 271:277

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, J., Giebisch, G. Intracellular sodium activity and sodium transport inNecturus gallbladder epithelium. J. Membrain Biol. 47, 327–355 (1979). https://doi.org/10.1007/BF01869743

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869743

Keywords

Navigation