Skip to main content
Log in

Simultaneous measurements of optical and electrical properties of artificial membranes composed of mitochondrial lipids and their interaction with cytochromec

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A newly constructed cell, which allows simultaneous measurements of optical and electrical properties, was used to study bimolecular black membranes composed of beef heart mitochondrial lipids and their interaction with cytochromec.

The results show that these highly charged membranes are stable only in relatively limited ranges of boundary conditions. In 0.1n KCl their maximum direct current (dc) resistance is 7×108 Ohm cm2±10%; the series capacity at 1kHz is 0.43 μF/cm2±3%; the entire thickness, determined by optical reflectivity, is 5.8±0.2 nm.

The interaction between oxidized cytochromec and these lipid membranes is primarily of electrostatic nature, and dependent on the presence of highly charged phospholipids, such as diphosphatidyl glycerol (cardiolipin) and phosphatidyl ethanolamine. The attachment of cytochromec maximally causes a 2.5-fold increase in reflectivity, without any noticeable change in the capacity. This leads to a subsequent instability of the membrane (i.e., rupture) preceded by a rapid increase of the dc conductivity. This behavior is far less pronounced with reduced cytochromec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Cherry, R.J., Chapman, D. 1969a. Optical properties of black lecithin films.J. Mol. Biol. 40:19

    PubMed  Google Scholar 

  • Cherry, R.J., Chapman, D. 1969b. Optical determination of the thickness of thin lipid films.J. Theor. Biol. 24:137

    PubMed  Google Scholar 

  • Das, M.L., Crane, F.L. 1964. Proteolipids. I. Formation of phospholipid-cytochromec complexes.Biochemistry 3:696

    Google Scholar 

  • Das, M.L., Haak, E.D., Crane, F.L. 1965. Proteolipids. IV. Formation of complexes between cytochromec and purified phospholipids.Biochemistry 4:859

    Google Scholar 

  • Dawson, R.M.C., Quinn, P.J. 1971. The interaction of soluble proteins with lipid interfaces.In: Advances in Experimental Medicine and Biology. Vol.14, p. 1. Plenum Press, New York

    Google Scholar 

  • De Vries, A.J. 1958. Foam stability. Recl. Trav. Chim. Pays-Bas. IV. Kinetics and activation energy of film rupture.77:383

    Google Scholar 

  • Ernster, L., Kuylenstierna, B. 1970. Outer membranes of mitochondria.In: Membranes of Mitochondria and Chloroplasts. p. 172. Van Nostrand Reinhold Co., New York & London

    Google Scholar 

  • Fleischer, S., Brierley, G., Klouwen, H., Slautterback, D.B. 1962. Studies of the electron transfer system. XLVII. The role of phospholipids in electron transfer.J. Biol. Chem. 237:3264

    PubMed  Google Scholar 

  • Fleischer, S., Rouser, G., Fleischer, B., Casu, A., Kritchevsky, G. 1967. Lipid composition of mitochondria from bovine heart, liver, and kidney.J. Lipid Res. 8:170

    PubMed  Google Scholar 

  • Folch, J., Lees, M., Stanley, G.H.S. 1957. A simple method of the isolation and purification of total lipids from animal tissues.J. Biol. Chem. 226:497

    PubMed  Google Scholar 

  • Gitler, C., Montal, M. 1972a. Thin proteolipid films: A new approach to the reconstitution of biological membranes.Biochem. Biophys. Res. Commun. 47:1486

    PubMed  Google Scholar 

  • Gitler, C., Montal, M. 1972b. Formation of decane-soluble proteolipids: Influence of monovalent and divalent cations.FEBS Lett. 28:329

    PubMed  Google Scholar 

  • Kimelberg, H.K., Lee, C.P., Claude, A., Mrena, E. 1970. Interactions of cytochromec with phospholipid membranes. I. Binding of cytochromec to phospholipid liquid crystals.J. Membrane Biol. 2:235

    Google Scholar 

  • Margoliash, E., Schejter, A. 1966. Cytochromec Adv. Protein Chem. 21:113

    PubMed  Google Scholar 

  • Mueller, P., Rudin, C.P., Ti, Tien, H., Wescott, W.C. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system.Nature 194:980

    Google Scholar 

  • Nöll, G.G. 1976. A Cell for simultaneous measurements of optical and electrical properties of black lipid membranes.Z. Naturforsch. 31c:40

    Google Scholar 

  • Papahadjopoulos, D., Poste, G. 1975. Calcium-induced phase separation and fusion in phospholipid membranes.Biophys. J. 15:945

    PubMed  Google Scholar 

  • Paul, K.G. 1947. Oxidation-reduction potential of cytochromec.Arch. Biochem. 12:441

    Google Scholar 

  • Person, Ph., Zipper, H., Felton, J.H. 1969. Cytochrome oxidase solubilization at high pH.Arch. Biochem. Biophys. 131:457

    PubMed  Google Scholar 

  • Reich, M., Wainio, W.W. 1961a. A cytochromec-phospholipid complex.J. Biol. Chem. 236:3058

    PubMed  Google Scholar 

  • Reich, M., Wainio, W.W. 1961b. Role of phospholipids in cytochromec oxidase activity.J. Biol. Chem. 236:3062

    PubMed  Google Scholar 

  • Steinemann, A., Läuger, P. 1971. Interaction of cytochromec with phospholipid monolayers and bilayer membranes.J. Membrane Biol. 4:74

    Google Scholar 

  • Takano, T., Kalli, O.B., Swanson, R., Dickerson, R.E. 1973. The structure of ferrocytochromec at 2.45 Å resolution.J. Biol. Chem. 248:5234

    PubMed  Google Scholar 

  • Theorell, H., Åkesson, Å. 1941. Studies on cytochromec. III. Titration curves.J. Am. Chem. Soc. 63:1820

    Google Scholar 

  • White, S.H. 1970. A study of lipid bilayer membrane stability using precise measurements of specific capacitance.Biophys. J. 10:1127

    PubMed  Google Scholar 

  • Zöllner, N., Eberhagen, D. 1965. Untersuchung und Bestimmung der Lipoide im Blut. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nöll, G.G. Simultaneous measurements of optical and electrical properties of artificial membranes composed of mitochondrial lipids and their interaction with cytochromec . J. Membrain Biol. 27, 335–346 (1976). https://doi.org/10.1007/BF01869144

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869144

Keywords

Navigation