Skip to main content
Log in

Surface charges on membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The equations of membrane potential developed by Kobatake and coworkers have been applied to the literature data on the resting membrane potential of the crayfish andMyxicola axons to derive values for the surface charge density present on the axon membranes. Some shortcomings of the method are briefly discussed. The value for the surface charge density derived for the squid axon membrane agreed with a similar value derived from measurements of shifts in Na and/or potassium conductance-voltage relations following changes in the concentration of calcium in the solutions bathing the axons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Begenisich, T. 1975. Magnitude and location of surface charges onMyxicola giant axons.J. Gen. Physiol. 66:47

    Article  PubMed  Google Scholar 

  • Bockris, J. O'M., Reddy, A. K. N. 1970. Modern Electrochemistry. p. 759. Plenum Press, New York

    Google Scholar 

  • Brismar, T. 1973. Effect of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibres ofXenopus laevis. Potential clamp experiments.Acta Physiol. Scand. 87:474

    PubMed  Google Scholar 

  • Brown, R. H., Jr. 1974. Membrane surface charge: Discrete and uniform modelling.Prog. Biophys. Mol. Biol. 28:343

    Google Scholar 

  • Cole, K. S. 1969. Zeta potential and discretevs. uniform surface charges.Biophys. J. 9:465

    Google Scholar 

  • D'Arrigo, J. S. 1973. Possible screening of surface charges on crayfish axon by polyvalent metal ions.J. Physiol. (London) 231:117

    Google Scholar 

  • Delahay, P. 1965. Double Layer and Electrode Kinetics. Interscience Publishers, Inc. New York

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A. L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218

    Google Scholar 

  • Gilbert, D. L., Ehrenstein, G. 1969. Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge.Biophys. J. 9:447

    Google Scholar 

  • Gilbert, D. S., Shaw, T. I. 1969. Extrusion and perfusion of the giant nerve fibre ofMyxicola.J. Physiol. (London) 204:28

    Google Scholar 

  • Goldman, L. 1968. The effects of some ions on the membrane potential of the giant axon ofMyxicola.J. Cell. Physiol. 71:33

    PubMed  Google Scholar 

  • Hille, B. 1968. Charges and potentials at the nerve surface. Divalent ions and pH.J. Gen. Physiol. 51:221

    PubMed  Google Scholar 

  • Hille, B. 1973. Potassium channels in myelinated nerve. Selective permeability to small cations.J. Gen. Physiol. 61:669

    PubMed  Google Scholar 

  • Hille, B., Woodhull, A. M., Shapiro, B. I. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions and pH.Philos. Trans. R. Soc. London B 270:301

    Google Scholar 

  • Horne, R. A., Day, A. F., Young, R. P., Yu, N. T. 1968. Interfacial water structure: The electrical conductivity under hydrostatic pressure of particulate solids permeated with aqueous electrolyte solution.Electrochim. Acta 13:397

    Google Scholar 

  • Kobatake, Y., Kamo, N. 1973. Transport processes in charged membranes.Prog. Polym. Sci. Jpn. 5:257

    Google Scholar 

  • Lakshminarayanaiah, N. 1969. Transport Phenomena in Membranes. p. 199. Academic Press, New York

    Google Scholar 

  • Lakshminarayanaiah, N. 1974. Potentiometric estimation of charges in barnacle muscle fibers under internal perfusion.J. Membrane Biol. 16:145

    Google Scholar 

  • Lakshminarayanaiah, N. 1975a. Measurement of membrane potential and estimation of effective fixed-charge density in membranes.J. Membrane Biol. 21:175

    Google Scholar 

  • Lakshminarayanaiah, N. 1975b.Addendum to: Potentiometric estimation of charges in barnacle muscle fibers under internal perfusion.J. Membrane Biol. 21:191

    Google Scholar 

  • Lakshminarayanaiah, N., Murayama, K. 1975. Estimation of surface charges in some biological membranes.J. Membrane Biol. 23:279

    Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G. 1971. Divalent ions and surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667

    PubMed  Google Scholar 

  • Meyer, K. H., Sievers, J. F. 1936. La perméabilité des membranes. I. Théorie de la perméabilite ionique. II. Essais avec des membranes sélectives artificielles. IV. Analyse de la structure de membranes végetales et animales.Helv. Chim. Acta 19:649, 665 & 987

    Article  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P. 1970. Effect of surface charge on the steady state potassium conductance of nodal membrane.Nature (London) 228:164

    Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P. 1972a. Effect of surface charge on stationary potassium conductivity of Ranvier node membrane. I. Change of pH of exterior solution.Biofizika 17:412

    PubMed  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P. 1972b. Effect of surface charge on steady potassium conductivity of Ranvier node membrane. II. Change of ionic strength of external solution.Biofizika 17:618

    PubMed  Google Scholar 

  • Mozhayeva, G. N., Naumov, A. P. 1972c. Effect of surface charge on stationary potassium conductivity of Ranvier node membrane. III. Effect of divalent cations.Biofizika 17:801

    PubMed  Google Scholar 

  • Robertson, J. D. 1964. Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes.In: Cellular Membranes in Development. M. Locke, editor. p. 1. Academic Press, New York

    Google Scholar 

  • Schauf, C. L. 1975. The interactions of calcium withMyxicola giant axons and a description in terms of a simple surface charge model.J. Physiol. (London) 248:613

    Google Scholar 

  • Stoeckenius, W., Engelman, D. M. 1969. Current models for the structure of biological membranes.J. Cell Biol. 42:613

    PubMed  Google Scholar 

  • Strickholm, A., Wallin, B. G. 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes.J. Gen. Physiol. 50:1929

    PubMed  Google Scholar 

  • Teorell, T. 1936. Ionic transference numbers in cellophane membranes.J. Gen. Physiol. 19:917

    Google Scholar 

  • Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Chem. 3:305

    Google Scholar 

  • Vanderkooi, G., Green, D. E. 1970. Biological membrane structure. I. The protein crystal model for membranes.Proc. Nat. Acad. Sci. USA 66:615

    PubMed  Google Scholar 

  • Vogel, W. 1973. Effect of lanthanum at the nodal membrane.Experientia 29:1517

    PubMed  Google Scholar 

  • Woodhull, A. M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshminarayanaiah, N. Surface charges on membranes. J. Membrain Biol. 29, 243–253 (1976). https://doi.org/10.1007/BF01868964

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868964

Keywords

Navigation