Skip to main content
Log in

Electrical properties of the cellular transepithelial pathway inNecturus gallbladder

I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Microelectrode techniques were employed to measure the electrical resistance of the cell membranes and the shunt pathway, and the equivalent electromotive forces (EMF's) at both cell borders inNecturus gallbladder epithelium. The cell is, on the average, 57 mV negative to the mucosal solution and 59 mV negative to the serosal solution. The transepithelial potential (V ms) ranges from 0.5 to 5 mV, serosal solution positive. Assuming that the shunt EMF (V s) is zero with standard Ringer's bathing both sides of the tissue, both cell membrane EMF's are oriented with the negative pole toward the cell interior and are 39.9±3.6 mV (apical,V a), and 69.4±1.8 mV (basal-lateral,V b). The values of the resistances of the cell membranes and the shunt are similar to those previously reported by others: apical (R a), 3350±390 Ω cm2, basal-lateral (R b) 2750±320 Ω cm2, shunt (R s), 480±50 Ω cm2. Ionic substitutions on the mucosal side produce changes in both EMF and resistance of the apical membrane and the shunt pathway. Increasing K concentration to 112mm reversesV a and greatly reducesR a. Complete Na replacement with an inert nonpermeant cation slightly increasesV a andR a. These results indicate that across the apical membraneP K>P Na. Analogous measurements ofV s indicate cation permselectivity, withP K>P Na>P cholineP TEAP methylglucamine. In general, changes inV s are very similar to the changes inV ms, indicating that the latter measurements yield adequate information on the properties of the shunt. The fact thatP Na>P Cl across the shunt rules out the possibility thatV ms is generated by a NaCl concentration gradient across the limiting junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, C.M. 1966. Time course of TEA+-induced anomalous rectification in squid giant axons.J. Gen. Physiol. 50:491

    PubMed  Google Scholar 

  2. Barry, R.J.C., Eggenton, J. 1972. Membrane potentials of epithelial cells in rat small intestine.J. Physiol. 227:201

    PubMed  Google Scholar 

  3. Boulpaep, E.L. 1971. Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular transport pathways.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 91. Schattauer-Verlag, Stuttgart

    Google Scholar 

  4. Boulpaep, E.L., Seely, J.F. 1971. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney.Amer. J. Physiol. 221:1084

    PubMed  Google Scholar 

  5. Burg, M.B., Orloff, J. 1970. Electrical potential difference across proximal convoluted tubules.Amer. J. Physiol. 219:1714

    PubMed  Google Scholar 

  6. Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    PubMed  Google Scholar 

  7. Diamond, J.M. 1962. The reabsorptive function of the gallbladder.J. Physiol. 161:442

    Google Scholar 

  8. Diamond, J.M. 1962. The mechanism of solute transport by the gallbladder.J. Physiol. 161:474

    Google Scholar 

  9. Diamond, J.M. 1968. Transport mechanisms in the gallbladder.In: Handbook of Physiology: Alimentary Canal. Vol. 5, p. 2451. American Physiological Society, Washington, D.C.

    Google Scholar 

  10. Diamond, J.M., Barry, P.H., Wright, E.M. 1971. The route of transepithelial ion permeation in the gallbladder.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 23. Schattauer-Verlag, Stuttgart

    Google Scholar 

  11. Diamond, J.M., Bossert, W.H. 1967. Standing gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia.J. Gen. Physiol. 50:2061

    PubMed  Google Scholar 

  12. Diamond, J.M., Harrison, S.C. 1966. The effect of fixed charges upon diffusion potentials and streaming potentials.J. Physiol. 183:37

    PubMed  Google Scholar 

  13. Dietschy, J.M. 1964. Water and solute movement across the wall of the everted rabbit gallbladder.Gastroenterology 47:395

    PubMed  Google Scholar 

  14. Eisenberg, R.S., Johnson, E.A. 1970. Three-dimensional electrical field problems in physiology.Prog. Biophys. Mol. Biol. 20:1

    Google Scholar 

  15. Finn, A.L., Reuss, L. 1975. Effects of changes in the composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium.J. Physiol. 250:541

    PubMed  Google Scholar 

  16. Frizzell, R.A., Schultz, S.G. 1972. Ionic conductances of extracellular shunt pathway in rabbit ileum. Influence of shunt on transmural sodium transport and electrical potential differences.J. Gen. Physiol. 59:318

    PubMed  Google Scholar 

  17. Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259

    Google Scholar 

  18. Frömter, E., Diamond, J.M. 1972. Route of passive ion permeation in epithelia.Nature, New Biol. 235:9

    Google Scholar 

  19. Frömter, E., Hegel, U. 1966. Transtubuläre Potentialdifferenzen an proximalen und distalen Tubuli der Rattenniere.Pflügers Arch. 291:107

    Google Scholar 

  20. Frömter, E., Müller, C.W., Wick, T. 1971. Permeability properties of the proximal tubular epithelium of the rat kidney studied with electrophysiological methods.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 119. Schattauer-Verlag, Stuttgart

    Google Scholar 

  21. Gatzy, J.T., Clarkson, T.W. 1965. The effect of mucosal and serosal solution cations on bioelectric properties of the isolated toad bladder.J. Gen. Physiol. 48:647

    PubMed  Google Scholar 

  22. Gelarden, R.T., Rose, R.C. 1974. Electrical properties and diffusion potentials in the gallbladder of man, monkey, dog, goose and rabbit.J. Membrane Biol. 19:37

    Google Scholar 

  23. Giebisch, G. 1961. Measurements of electrical potential difference on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659

    PubMed  Google Scholar 

  24. Hille, B. 1967. The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion.J. Gen. Physiol. 50:1287

    PubMed  Google Scholar 

  25. Hodgkin, A.L., Horowicz, P. 1959. The influence of potassium and chloride ions on the membrane potential of single muscle fibres.J. Physiol. 148:127

    PubMed  Google Scholar 

  26. Kokko, J.P. 1973. Proximal tubule potential difference. Dependence on glucose, HCO3, and amino acids.J. Clin. Invest. 52:1362

    PubMed  Google Scholar 

  27. Leb, D.E., Hoshiko, T., Lindley, B.D. 1965. Effects of alkali metal cations on the potential across toad and bullfrog urinary bladder.J. Gen. Physiol. 48:527

    PubMed  Google Scholar 

  28. Machen, T.E., Diamond, J.M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gall-bladder during maximal fluid transport.J. Membrane Biol. 1:194

    Google Scholar 

  29. Moreno, J.H. 1974. Blockage of cation permeability across the tight junctions of gallbladder and other leaky epithelia.Nature 251:150

    PubMed  Google Scholar 

  30. Politoff, A.L., Socolar, S.J. 1971. Uncoupling cell junctions in a glandular epithelium by depolarizing current.Science 172:492

    PubMed  Google Scholar 

  31. Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium: Intercellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1

    PubMed  Google Scholar 

  32. Reuss, L., Finn, A.L. 1975. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder.Biophys. J. 15:71

    PubMed  Google Scholar 

  33. Reuss, L., Finn, A.L. 1975. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141

    Google Scholar 

  34. Rose, B. 1970. Junctional membrane permeability: Restoration by repolarizing current.Science 169:607

    PubMed  Google Scholar 

  35. Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.J. Gen. Physiol. 57:639

    PubMed  Google Scholar 

  36. Schultz, S.G. 1972. Electrical potential differences and electromotive forces in epithelial tissues.J. Gen. Physiol. 59:794

    PubMed  Google Scholar 

  37. Schultz, S.G., Zalusky, R. 1964. Ion transport in isolated rabbit ileum. II. The interaction between active sodium and active sugar transport.J. Gen. Physiol. 47:1043

    PubMed  Google Scholar 

  38. Shiba, H. 1971. Heavisides “Bessel Cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes.J. Theoret. Biol. 30:59

    Google Scholar 

  39. Strickholm, A., Wallin, B.G. 1967. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes.J. Gen. Physiol. 50:1929

    PubMed  Google Scholar 

  40. Wheeler, H.O. 1963. Transport of electrolytes and water across wall of rabbit gall-bladder.Amer. J. Physiol. 205:427

    PubMed  Google Scholar 

  41. Whitlock, R.T., Wheeler, H.O. 1964. Coupled transport of solute and water across rabbit gall-bladder epithelium.J. Clin. Invest. 43:2249

    PubMed  Google Scholar 

  42. Whittembury, G. 1971. Relationship between sodium extrusion and electrical potentials in kidney cells.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. p. 153. Schattauer-Verlag, Stuttgart

    Google Scholar 

  43. Windhager, E.E., Boulpaep, E.L., Giebisch, G. 1967. Electrophysiological studies in single nephrons.Proc. 3rd Int. Congr. Nephrol., Washington 1966. p. 35. Karger, Basel-New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuss, L., Finn, A.L. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. J. Membrain Biol. 25, 115–139 (1975). https://doi.org/10.1007/BF01868571

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868571

Keywords

Navigation