Skip to main content
Log in

Bioluminescence in scale-worm photosomes: the photoprotein polynoidin is specific for the detection of superoxide radicals

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Photosomes are the characteristic organelles of the luminous epithelium in the elytral appendages of polynoïd annelids. They are paracrystals of endoplasmic reticulum and emit a flash of bioluminescence in response to stimulation. The series of flashes in response to repetitive stimulation begins with a period of facilitation because the number of reacting photosomes increases in each photogenic cell. Reacting photosomes are coupled to the plasma membrane by dyad junctions which are established under stimulation and dedifferentiate in the resting system. The calcium influx of an action potential propagated through the conducting elytral epithelium triggers the luminous reaction. This reaction is based on a membrane photoprotein, polynoidin, which is specifically triggered by superoxide radicals. These oxy radicals result from the oxydation of riboflavin, which is present in a compartment of the photosomes. Polynoidin proved to be an interesting probe in the detection of superoxide radicals produced by activated white blood cells. Its potential applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen RC (1981) Lucigenin chemiluminescence. In: DeLuca MA, McElroy W (eds) Bioluminescence and chemiluminescence. Acad Press, New York, pp 63–73

    Google Scholar 

  • Anctil M, Bassot JM, Nicolas MT (1989) Effect of monoamines and related drugs on the bioluminescence of scale worm elytra (Polychaeta, Polynoinae). Comp Biochem Physiol 93:127–135

    Google Scholar 

  • Anderson R, Orci L, Brown M, Garcia-Segura M, Golstein J (1983) Ultrastructural analysis of crystalloid endoplasmic reticulum in UT-1 cells and its disappearance in response to cholesterol. J Cell Sci 63:1–20

    PubMed  Google Scholar 

  • Andersson S, Hyde S, Larsson K, Lidin S (1988) Minimal surfaces and structures: from inorganic and metal crystals to cell membranes and biopolymers. Chem Rev 88:221–242

    Google Scholar 

  • Andersson S, Blum Z, Hyde S, Larsson K, Landh T, Lidin S, Ninham B (1994) The language of shape. The role of curvature in the physical and biological sciences. Elsevier, Amsterdam

    Google Scholar 

  • Arrio B, Binet A, Dupaix A, Lecuyer B, Fresneau C, Volfin P (1980) Purification de l'émetteur de fluorescence chez les polynoinae (Annélides polychètes). CR Acad Sci (Paris) 290:1537–1540

    Google Scholar 

  • Barber DA, Do NH, Tackett RL, Capomacchia AC (1995) Nonsuperoxide lucigenin-enhanced chemiluminescence from phospholipids and human saphenous veins. Free Rad Biol Med 18:565–569

    PubMed  Google Scholar 

  • Bassot JM (1964) Présence, dans les photocytes des Annelides polynoinae d'une forme paracristalline de reticulum endoplasmique. CR Acad Sci (Paris) 259:1549–1552

    Google Scholar 

  • Bassot JM (1966a) Donnees histochimiques et histologiques sur les organes lumineux des élytres d'Annélides polynoinae. Cah Biol Mar 7:39–52

    Google Scholar 

  • Bassot JM (1966b) Une forme microtubulaire et paracristalline de reticulum endoplasmique dans les photocytes des Annélides polynoinae. J Cell Biol 31:135–158

    PubMed  Google Scholar 

  • Bassot JM (1966c) On the comparative morphology of some luminous organs. In: Johnson FH, Haneda Y (eds) Bioluminescence in progress. Princeton University Press, Princeton, N.J., pp 557–610

    Google Scholar 

  • Bassot JM (1979) Sites actifs et facilitation dans trois systèmes bioluminescents. Arch Zool Exp Gen 120:5–24

    Google Scholar 

  • Bassot JM (1985) Fast membrane transformation in a flashing endoplasmic reticulum. In: Packer L (ed) Recent advances in biological membranes studies. Plenum Press, New York, pp 259–284

    Google Scholar 

  • Bassot JM (1987) A transient intracellular coupling explains the facilitation of responses in the bioluminescent system of scale worms. J Cell Biol 105:2235–2243

    PubMed  Google Scholar 

  • Bassot JM, Bilbaut A (1977a) Biolominescence des élytres d'Acholoe. III. Déplacement des sites d'origine au cours des émissions. Biol Cell 28:155–162

    Google Scholar 

  • Bassot JM, Bilbaut A (1977b) Bioluminescence des élytres d'Acholoe. IV. Luminescence et fluorescence des photosomes. Biol Cell 28:163–168

    Google Scholar 

  • Bassot JM, Nicolas MT (1978a) Similar paracrystals of endoplasmic reticulum in the photoemitters and the photoreceptors of scale-worms. Experientia 34:726–728

    Google Scholar 

  • Bassot JM, Nicolas MT (1978b) Flashing paracrystals of endoplasmic reticulum. Biol Cell 32:163–164

    Google Scholar 

  • Bassot JM, Nicolas MT (1983) Excitation-bioluminescence coupling and fast membrane dynamics in the scale worm system. In New perspectives on membrane dynamics. CNRS-INSERM International Symposium, pp 94–95

  • Bassot JM, Nicolas G (1987) An optional dyadic junctional complex revealed by fast-freeze fixation in the bioluminescent system of the scale worm. J Cell Biol 105:2245–2246

    PubMed  Google Scholar 

  • Bassot JM, Bilbaut A, Mackie GO, Passano LM, Pavan de Ceccatty M (1978) Bioluminescence and other responses spread by epithelial conduction in the siphonophoreHippopodius. Biol Bull (Woods Hole) 155:473–498

    Google Scholar 

  • Bilbaut A (1980a) Excitable epithelial cells in the bioluminescent scales of a polynoid worm; effect of various ions on the action potentialsand on the excitation-bioluminescence coupling. J Exp Biol 88:219–238

    Google Scholar 

  • Bilbaut A (1980b) Cell junction in the excitable epithelium of bioluminescent scales on a polynoid worm: a freeze-fracture and electrophysiological study. J Cell Sci 41:341–368

    PubMed  Google Scholar 

  • Bilbaut A, Bassot JM (1977) Bioluminescence des élytres d'Acholoe. II. Données photométriques. Biol Cell 28:145–154

    Google Scholar 

  • Brini M, Murgia M, Pasti L, Picard D, Pozzan T, Rizzuto R (1993) Nuclear Ca2+ concentration measured with specifically targeted recombinant aequorin. EMBO J 12:4813–4818

    PubMed  Google Scholar 

  • Colepicolo P, Nicolas MT, Bassot JM, Hastings JW (1989) Expression and localization of bacterial luciferase during induction revealed by immunogold labeling after fast freeze fixation. Arch Microbiol 152:72–76

    Google Scholar 

  • Colepicolo P, Camarero V, Nicolas MT, Bassot JM, Karnovsky M, Hastings JW (1990) A sensitive and specific assay for superoxide anion released by neutrophiles or macrophages based on bioluminescence of polynoidin. Anal Biochem 184:369–374

    PubMed  Google Scholar 

  • Coyle TC, Puttfarcken P (1993) Oxidative stress, glutamate and neurodegenerative disorder. Science 262:689–695

    PubMed  Google Scholar 

  • Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–947

    PubMed  Google Scholar 

  • Faulkner K, Fridovich I (1993) Luminol and lucigenin as detectors for O−2. Fpee Rad Biol Med 15:447–451

    Google Scholar 

  • Ghosh R, Amstad P, Cerrutti P (1993) UVB-induced DNA breaks interfere with transcriptional induction of c-fos. Mol Cell Biol 13:6992–6999

    PubMed  Google Scholar 

  • Hastings JW, Bassot JM, Nicolas MT (1987) Photosomes and scintilllons. Intracellular localization and control of luminescent emissions. Endocytobiology. Ann NY Acad Sci 503:180–186

    Google Scholar 

  • Henry JP, Michelson AM (1977a) Superoxide and chemiluminescence. In Hayaishi O, Asaka K (eds) Superoxide and superoxide dismutase. University of Tokyo Press, Tokyo, pp 83–90

    Google Scholar 

  • Henry JP, Michelson AM (1977b) Light emission involving superoxide anion. In Hayaishi O, Asaka K (eds) Superoxide and superoxide dismutase. University of Tokyo Press. Tokyo, pp 135–151

    Google Scholar 

  • Henry JP, Isambert MF, Michelson AM (1970) Studies in bioluminescence. III. ThePholas dactylus system. Biochim Biophys Acta 205:437–450

    PubMed  Google Scholar 

  • Henry JP, Isambert MF, Michelson AM (1973) Studies in bioluminescence. IX Mechanism of thePholas dactylus system. Biochimie 55:83–93

    PubMed  Google Scholar 

  • Herrera AA (1979) Electrophysiology of bioluminescent excitable epithelial cells in a polynoid polychaete worm. J Comp Physiol 129:67–78

    Google Scholar 

  • Herrera AA, Hastings JW, Morin JG (1974) Bioluminescence in cell free extracts of the scale worm Harmothoe (Annelida, Polynoidae). Biol Bull (Woods Hole) 147:480–481

    Google Scholar 

  • Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant parhway to prevent apoptosis. Cell 75:241–251

    PubMed  Google Scholar 

  • Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition in neural death: decreased generation of reactive oxygen species. Science 262:1274–1277

    PubMed  Google Scholar 

  • Karnovsky M (1994) Cytochemistry and reactive oxygen species: a retrospective. Histochemistry 102:15–27

    PubMed  Google Scholar 

  • Kendall JM, Dormer RL, Campbell AK (1992) Targeting aequorin to the endoplasmic reticulum living cells. Biochem Biophys Res Commun 189:1008–1016

    PubMed  Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Recombinant aequorin as a probe for cytosolic free Ca2+ in Escherichia coli. FEBS Lett 282:83–90

    Google Scholar 

  • Koga S, Nakano M (1991) Determination of O2− generated by microsomal membranes using cypridina luciferin analog-dependent luminescence. In: Stanley PE, Kricka LJ (eds) Bioluminescence and chemiluminescence. Wiley, New York, pp 441–444

    Google Scholar 

  • Korsmeyer SJ (1992) Bcl2 initiates a new category of oncogenes: regulators of cell death. Blood 80:879–886

    PubMed  Google Scholar 

  • Krystal BS, Chen J, Yu BP (1994) Sensitivity of mitochondrial transcription to different free radical species. Free Rad Biol Med 16:323–329

    PubMed  Google Scholar 

  • Lafon-Cazals M, Pietri S, Culcasi M, Boeckert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    PubMed  Google Scholar 

  • Landh T (1994) Cubic bilayer systems described by periodic minimal surfaces: from reversed cubic phases to cytomembranes. In: Epand RM (ed) Structural and biological roles of lipids forming non-lamellar structures. Fundamentals of medical cell biology. JAI Press, Greenwich

    Google Scholar 

  • Lecuyer B, Arrio A (1975) Some spectral characteristics of the light emitting system of the polynoid worms. Photochem Photobiol 22:213–215

    PubMed  Google Scholar 

  • Menzel R, Kargel E, Wolff C, Vogel F, Schunk WH (1994) High level expression of integral membrane proteins induces proliferation of the endoplasmic reticulum. In: Lechner MC (ed) Cytochrome P 450. 8th Int Conf. John Libbey Eurotext, Paris, pp 307–310

  • Meyer M, Schreck R, Baeuerle P (1993) H2O2 and antioxidants have opposite effects on activation of NF-XB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12:2005–2015

    PubMed  Google Scholar 

  • Miron MJ, LaRivière L, Bassot JM, Anctil M (1987) Immunohistochemical and radioautographic evidence of monoamine-containing cells in bioluminescent elytra ofHarmothoe imbricata (Polychaeta). Cell Tissue Res 249:547–556

    Google Scholar 

  • Müller T, Davies EV, Campbell AK (1989) Pholasin chemiluminescence detects mostly superoxide anion released from activated human neutrophils. J Biolum Chemilum 3:105–113

    Google Scholar 

  • Nakano M (1990) Determination of superoxide radical and singlet oxygen based on chemiluminescence of luciferin analogs. Methods Enzymol 186:585–591

    PubMed  Google Scholar 

  • Nicol JAC (1953) Luminescence in polynoid worms. J Mar Biol Assoc UK 32:65–84

    Google Scholar 

  • Nicol JAC (1954) The nervous control of luminescent responses in polynoid worms. J Mar Biol Assoc UK 33:225–255

    Google Scholar 

  • Nicol JAC (1957a) Luminescence in polynoids. II Different modes of response in the elytra. J Mar Biol Assoc UK 36:261–269

    Google Scholar 

  • Nicol JAC (1957b) Luminescence in polynoids. III Propagation of excitation through the nerve cord. J Mar Biol Assoc UK 36:271–273

    Google Scholar 

  • Nicol JAC (1957c) Spectral composition of light of polynoid worms. J Mar Biol Assoc UK 36:529–538

    Google Scholar 

  • Nicol JAC (1958) Luminescence in polynoids. IV Measurement of light intensity. J Mar Biol Assoc UK 37:33–41

    Google Scholar 

  • Nicolas MT (1977) Bioluminescence des élytres d'Acholoe. V Les principales étapes de la régénération. Arch Zool Exp Gen 118:103–120

    Google Scholar 

  • Nicolas MT (1979) Présence de photosomes dans les fractions lumineuses du système élytral des Polynoinae (Annélides Polychètes). CR Acad Sci (Paris) 289:103–120

    Google Scholar 

  • Nicolas MT, Bassot JM (1984) La lentille a paracristaux de reticulum endoplasmique chez les Aphroditiens (Annélide polychètes). In: La vision chez les invertébrées. CNRS, Paris, pp 99–102

    Google Scholar 

  • Nicolas MT, Bassot JM (1993) Freeze substitution after fast-freeze fixation in preparation for immunocytochemistry. Microsc Res Tech 24:474–487

    PubMed  Google Scholar 

  • Nicolas MT, Moreau M, Guerrier P (1978) Indirect nervous control of luminescence in the polynoïd worm Harmothoe lumulata. J Exp Zool 206:427–433

    Google Scholar 

  • Nicolas MT, Bassot JM, Shimomura O (1981) Caractérisation d'une photoproteine nouvelle dans le système bioluminescent des annélides polynoinae. CR Acad Sci (Paris) 293:777–780

    Google Scholar 

  • Nicolas MT, Bassot JM, Shimomura O (1982) Polynoidin, a membrane photoprotein isolated from the bioluminescent system of scale-worms. Photochem Photobiol 35:201–207

    Google Scholar 

  • Nicolas MT, Nicolas G, Johnson CH, Bassot JM, Hastings JW (1987) Characterization of the bioluminescent organelles inGonyaulax polyedra (Dinoflagellates) after fast-freeze fixation and antiluciferase immunogold staining. J Cell Biol 105:723–735

    PubMed  Google Scholar 

  • Nicolas MT, Nicolas G, Bassot JM (1989) Immunogold labeling of luciferase in the luminous bacteriaVibrio harvei after fast freeze fixation and different freeze substitution and embedding procedures. J Histochem Cytochem 37:663–674

    PubMed  Google Scholar 

  • Nicolas MT, Colepicolo P, Camarero V, Damon M, Nicolas JC, Bassot JM (1991) Luminescence detection of superoxide radicals with the photoprotein polynoidin. In: Stanley PE, Kricka LJ (eds) Bioluminescence and chemiluminescence. Wiley, New York, pp 401–404

    Google Scholar 

  • Nicolas MT, Nicolas JC, Chabret C (1993) Targeting aequorin to the plasma membrane. Proc Bioluminescence Symp. Westin Maui, pp 63

  • Packer L, Glazer AN (1990) Oxygen radicals in biological systems. Methods Enzymol 186:1–245

    Google Scholar 

  • Pavans de Ceccatty M, Bassot JM, Bilbaut A, Nicolas MT (1972) Genèse des paracristaux photogènes et de leurs structures d'excitation dans les cellules de l'élytre d'Acholoe astericola Delle Ch. C R Acad Sci (Paris) 275:2363–2366

    Google Scholar 

  • Pavans de Ceccatty M, Bassot JM, Bilbaut A, Nicolas MT (1977) Bioluminescence des elytres d'Acholoe. I. Morphologie des supports structuraux. Biol Cell 28:57–64

    Google Scholar 

  • Ratan RR, Murphy TH, Baraban JM (1994) Oxidative stress induces apoptosis in embryonic cortical neurons. J Neurochem 62:376–379

    PubMed  Google Scholar 

  • Rizzuto R, Simpson AWM, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    PubMed  Google Scholar 

  • Roberts PA, Knight J, Campbell AK (1987) Pholasin, a bioluminescent indicator for detecting activation of single neutrophils. Anal Biochem 160:139–148

    PubMed  Google Scholar 

  • Schunck WH, Vogel F, Gross B, Kargel E, Mauersberber S, Kopke K, Gengnagel C, Muller HG (1991) Comparison of two cytochromes P-450 fromCandida maltosa: primary structures, substrate specificities and effects of their expressions in Saccharomyces cerivisiae on ther proliferation of endoplasmic reticulum. Eur J Cell Biol 55:336–345

    PubMed  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan Aequorea. J Cell Comp Physiol 59:223–239

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassot, JM., Nicolas, MT. Bioluminescence in scale-worm photosomes: the photoprotein polynoidin is specific for the detection of superoxide radicals. Histochem Cell Biol 104, 199–210 (1995). https://doi.org/10.1007/BF01835153

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01835153

Keywords

Navigation