Skip to main content
Log in

Characterization of calsequestrin of avian skeletal muscle

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

A calsequentrin (CS)-like glycoprotein is present in the sarcoplasmic reticulum (SR) of chicken pectoralis muscle, which displays unusual properties: it binds relatively low amounts of Ca2+, compared to CS in mammalian skeletal muscle (Yap & MacLennan, 1976), it does not exhibit a marked pH-dependent shift in mobility in sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), and its metachromatic staining properties with Stains All are likewise peculiar (Damianiet al., 1986). We have now definitively localized the same protein to the junctional terminal cisternae (TC) fraction of the SR of chicken pectoralis muscle and have further characterized it, following purification by crystallization with Ca2+ and by Ca2+-dependent elution from phenyl-Sepharose columns. The purified protein (apparent Mr: 51 kDa), isoelectrofocuses at pH 4.5, and is readily identified on blots by a45Ca overlay technique, similar to CS of rabbit skeletal muscle, but it binds half as much Ca2+ (about 20 moles of Ca2+ per mole of protein), as estimated by equilibrium dialysis. However, the chicken protein shares extensive similarities with mammalian CSs, concerning Ca2+-induced changes in maximum intrinsic fluorescence and the Ca2+-modulated interaction with phenyl-Sepharose, as well as in being protected by Ca2+ from proteolysis by either trypsin or chymotrypsin. We discuss how the presence of a Ca2+-regulated hydrophobic site in the CS molecule appears to be the most invariant property of the CS-family of Ca2+-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aaron, B-M. B., Oikawa, K., Reithmeier, R. A. F. &Skyes, B. D. (1984) Characterization of skeletal muscle calsequestrin by1hnmr.J. biol. Chem. 259, 11876–81.

    PubMed  Google Scholar 

  • Brunschwig, J. B., Brandt, N., Caswell, A. H. &Lukeman, S. (1982) Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordating.J. Cell Biol. 93, 543–50.

    PubMed  Google Scholar 

  • Campbell, K. P., Franzini-Armstrong, C. &Shamoo, A. (1980) Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the sarcoplasmic reticulum feet associated with heavy sarcoplasmic reticulum vesicles.Biochim. Biophys. Acta 602, 97–116.

    PubMed  Google Scholar 

  • Campbell, K. P., MacLennan, D. H., Jorgensen, A. &Mintzer, M. C. (1983) Purification and characterization of cardiac calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein.J. biol Chem. 58, 1238–45.

    Google Scholar 

  • Campbell, K. P. (1986) Protein components and their roles in sarcoplasmic reticulum function. InSarcoplasmic Reticulum in Muscle Physiology (edited byEntmann, M. L. &van Winkle, W. B.) pp. 65–9. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Cala, S. E. &Jones, L. R. (1983) Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca-dependent elution from phenyl-Sepharose,J. biol. Chem. 258, 11932–36.

    PubMed  Google Scholar 

  • Cleveland, D. W., Fischer, S. G., Kirschner, M. W. &Laemmli, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulphate by gel electrophoresis.J. biol. Chem. 252, 1102–6.

    PubMed  Google Scholar 

  • Costello, B., Chadwick, C., Saito, A., Chu, A., Maurer, A. &Fleischer, S. (1986) Characterization of the junctional face membrane from terminal cisternae of sarcoplasmic reticulum.J. Cell. Biol. 103, 741–53.

    PubMed  Google Scholar 

  • Damiani, E., Salvatori, S., Zorzato, F. &Margreth, A. (1986) Characteristics of skeletal muscle calsequestrin: comparison of mammalian, amphibian and avian muscles.J. Musc. Res. Cell Motility 7, 435–45.

    Google Scholar 

  • Damiani, E., Spamer, C., Heilmann, C., Salvatori, S. &Margreth, A. (1988) Endoplasmic reticulum of rat liver contains two proteins closely related to skeletal sarcoplasmic reticulum Ca-ATPase and calsequestrin.J. biol. Chem. 263, m 340–3.

    PubMed  Google Scholar 

  • Damiani, E., Barillari, A., Tobaldin, GA., Pierobon, S. &Margreth, A. (1989) Biochemical characteristics of free and junctional sarcoplasmic reticulum and of transverse tubules in human skeletal muscle.Muscle & Nerve 12, 323–31.

    Google Scholar 

  • Fliegel, L., Onishi, M., Carpenter, M. R., Khann, V. K., Reithmeier, R. A. F. &MacLennan, D. H. (1987) Amino acid sequence of rabbit fast-twitch skeletal muscle calsequestrin deduced from cDNA and peptide sequencing.Proc. natn. Acad. Sci. USA 84, 1167–71.

    Google Scholar 

  • Franzini-Armstrong, C., Kenney, L. J. &Varriano-Marston, E. (1987) The structure of calsequestrin in triads of vertebrate skeletal muscle: A deep-etch study.J. Cell Biol. 105, 49–56.

    PubMed  Google Scholar 

  • Houmard, J. &Drapeau, G. R. (1982) Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds.Proc. natn. Acad. Sci USA. 69, 3506–9.

    Google Scholar 

  • Ikemoto, N., Bhatnagar, G. M., Nagy, B. &Gergely, J. (1972) Interaction of divalent cations with the 55,000-Dalton protein component of the sarcoplasmic reticulum. Studies of fluorescence and circular dichroism.J. biol. Chem. 247, 7835–7.

    Google Scholar 

  • Ikemoto, I., Nagy, B., Bhatnagar, M. &Gergely, J. (1974) Studies on a metal binding protein of the sarcoplasmic reticulum.J. biol. Chem. 249, 2357–65.

    PubMed  Google Scholar 

  • Ikemoto, N. &Koshita, M. (1988) Role of calsequestrin in the regulation of Ca2+-release from sarcoplasmic reticulum.Biophys. J. 53, 421a.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of the bacteriophage T4.Nature (London) 227, 680–5.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. &Randall, R. J. (1951) Protein measurements with the Folin phenol reagent.J. biol. Chem. 193, 265–75.

    PubMed  Google Scholar 

  • MacLennan, D. H. &Wong, P. T. S. (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum.Proc. natl. Acad. Sci. USA 68,1231–5.

    PubMed  Google Scholar 

  • MacLennan, D. H., Campbell, K. P., &Reithmeier, R. A. F. (1983)Calsequestrin in Calcium and Cell function, vol. 4 (edited by Cheung, W.), pp. 151–73. New York: Academic Press.

    Google Scholar 

  • Maruyama, K., Mikawa, T. &Ebashi, S. (1984) Detection of calcium binding proteins by45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis.J. Biochem. (Tokyo) 95, 511–19.

    Google Scholar 

  • Maurer, A., Tanaka, M., Ozawa, T. &Fleischer, S. (1985) Purification and crystallization of the calcium binding protein of sarcoplasmic reticulum from skeletal muscle.Proc. natn. Acad. Sci. USA 82, 4036–40.

    Google Scholar 

  • Michalak, M., Campbell, K. P. &MacLennan, D. H. (1980) Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes.J. biol. Chem. 225, 1317–26.

    Google Scholar 

  • Mitchell, R. D., Simmerman, H. K. B. &Jones, L. R. (1988) Ca2+ binding effects on protein conformation and protein interactions of canine cardiac calsequestrin.J. biol. Chem. 263, 1376–81.

    PubMed  Google Scholar 

  • O`'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins.J. biol. Chem. 250,1317–26.

    Google Scholar 

  • Ostwald, T. J., MacLennan, D. H. &Dorrington, K. J. (1974) Effects of cation binding on the conformation of calsequestrin and the high-affinity calcium-binding protein of sarcoplasmic reticulum.J. biol. Chem. 259, 5867–71.

    Google Scholar 

  • Sabbadini, R. A. &Okamoto, V. (1983) The distribution of ATPase activities in purified transverse tubular membranes.Arch. Biochem. Biophys. 223, 107–19.

    PubMed  Google Scholar 

  • Saito, A., Seiler, S., Chu, A. &Fleischer, S. (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.J. Cell. Biol. 99, 875–85.

    PubMed  Google Scholar 

  • Scott, B. T., Simmerman, H. K. B., Collins, J. H., Nadal-Ginard, B. &Jones, L. R. (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning.J. biol. Chem. 263, 8958–64.

    PubMed  Google Scholar 

  • Slupsky, J. R., Ohnishi, M., Carpenter, M. R. &Reithmeier, R. A. F. (1987) Characterization of cardiac calsequestrin.Biochemistry 26, 6539–44.

    PubMed  Google Scholar 

  • Tanaka, M., Ozawa, T., Maurer, A., Cortese, J. D. &Fleischer, S. (1986) Apparent cooperativity of Ca binding associated with crystallization of Ca-binding protein from sarcoplasmic reticulum.Arch. Biochem. Biophys. 251, 369–78.

    PubMed  Google Scholar 

  • Towbin, A., Stahelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose.Proc. natn. Acad. Sci USA. 76, 4350–4.

    Google Scholar 

  • Volpe, P., Bravin, M., Zorzato, F. &Margreth, A. (1988) Isolation of terminal cisternae of frog skeletal muscle.J. biol. Chem. 263, 9901–7.

    PubMed  Google Scholar 

  • White, D. M., Colwyn, R. T. &Denborough, M. A. (1983) A novel method for the isolation of calsequestrin from porcine skeletal muscle sarcoplasmic reticulum.Biochim. biophys. Acta,744, 1–6.

    PubMed  Google Scholar 

  • Yap, J. L. &MacLennan, D. H. (1976) Characterization of the adenosinetriphosphatase and calsequestrin isolated from sarcoplasmic reticulum of normal and dystrophic chickens.Can. J. Biochem. 54, 670–3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damiani, E., Salvatori, S. & Margreth, A. Characterization of calsequestrin of avian skeletal muscle. J Muscle Res Cell Motil 11, 48–56 (1990). https://doi.org/10.1007/BF01833325

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01833325

Keywords

Navigation