Skip to main content
Log in

The holomorphic automorphism group of the complex disk

  • Research Papers
  • Published:
aequationes mathematicae Aims and scope Submit manuscript

Abstract

The group of all holomorphic automorphisms of the complex unit disk consists of Möbius transformations involving translation-like holomorphic automorphisms and rotations. The former are calledgyrotranslations. As opposed to translations of the complex Plane, which are associative-commutative operations forming a group, gyrotranslations of the complex unit disk fail to form a group. Rather, left gyrotranslations are gyroassociative-gyrocommutative operations forming agyrogroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, M. A.,Groups and symmetry. Springer, New York, 1988, p. 132.

    Google Scholar 

  2. Artzy, R.,Linear geometry. Addison-Wesley, Massachusetts, 1965.

    Google Scholar 

  3. Bear, H. S.,Distance-decreasing functions on the hyperbolic plane. Mich. Math. J.39 (1992) 271–279.

    Google Scholar 

  4. Bear, H. S.,Part metric and hyperbolic metric. Amer. Math. Monthly98 (1991) 109–123.

    Google Scholar 

  5. Benz, W.,Geometrische Transformationen unter besonderer Berücksichtigung der Lorentztransformationen. Chap. 6. Wissenschaftsverlag, Wien, 1992.

    Google Scholar 

  6. Einstein, A.,Zur Elektrodynamik bewegter Körper (On the electrodynamics of moving bodies). Ann. Physik (Leipzig)17 (1905), 891–921.

    Google Scholar 

  7. Franzoni, T. andVesentini, E.,Holomorphic maps and invariant distances (L. Nachbin, ed.). [Math. Studies, vol. 40]. North Holland, New York, 1980.

    Google Scholar 

  8. Friedman, Y. andUngar, A. A.,Gyrosemidirect product structure of bounded symmetric domains. preprint.

  9. Isidro, J. M. andStachó, L. L.,Holomorphic automorphism groups in Banach spaces: An elementary introduction (L. Nachbin, ed.). [Math. Studies, vol. 97]. North Holland, New York, 1984, pp. 29–32.

    Google Scholar 

  10. Jaroszewicz, T. andKurzepa, P. S.,Geometry and spacetime propagation of spinning particles. Ann. Phys.216 (1992), 226–267.

    Google Scholar 

  11. Karzel, H.,Inzidenzgruppen I. Lecture notes by I. Pieper and K. Sörensen, Univ. Hamburg, 1965, pp. 123–135.

    Google Scholar 

  12. Kerby, W. andWefelscheid, H.,The maximal subnear-field of a neardomain. J. Algebra28 (1974), 319–325.

    Google Scholar 

  13. Kikkawa, M.,Geometry of homogeneous Lie loops. Hiroshima Math. J.5 (1975), 141–179.

    Google Scholar 

  14. Lang, S.,Complex analysis. 2nd ed., Springer, New York, 1985.

    Google Scholar 

  15. Lang, S.,Introduction to complex hyperbolic spaces. Springer, New York, 1987, p. 12.

    Google Scholar 

  16. Pflugfelder, H. O.,Quasigroups and loops. Introduction, Heldermann Verlag, Berlin, 1990.

    Google Scholar 

  17. Chein, O., Pflugfelder, H. O. andSmith, J. D. H. (eds.),Quasigroups and loops theory and applications. Sigma Series in Pure Mathematics, Vol. 8, Heldermann Verlag, Berlin, 1990.

    Google Scholar 

  18. Sabinin, L. V.,On the equivalence of the category of loops and the category of homogeneous spaces (Russian). Dokl. Akad. Nauk. SSR205, no. 3, (1972), 533–536; English trans. Soviet Math. Dokl. 13, no. 4 (1972) 970–974.

    Google Scholar 

  19. Sabinin, L. V.,The geometry of loops (Russian). Mat. Zamethi12, no. 5 (1972), 799–805.

    Google Scholar 

  20. Sexl R. andUrbantke, H. K.,Relativität, Gruppen, Teilchen. Springer, New York, 1992, pp. 40, 138.

    Google Scholar 

  21. Tits, J.,Généralisation des groupes projectifs. Acad. Roy. Belg. Cl. Sci. Mém. Coll. 5e Ser. 35 (1949) 197–208, 224–233, 568–589, 756–773.

    Google Scholar 

  22. Ungar, A. A.,Thomas precession and the parametrization of the Lorentz transformation group. Found. Phys. Lett.1 (1988) 57–89.

    Google Scholar 

  23. Ungar, A. A.,Weakly associative groups. Resultate Math.17 (1990), 149–168.

    Google Scholar 

  24. Ungar, A. A.,Quasidirect product groups and the Lorentz transformation group. In T. M. Rassias (ed.),Constantin Caratheodory: An international tribute, World Sci. Pub., NJ, 1990, pp. 1378–1392.

    Google Scholar 

  25. Ungar, A. A.,Solving the velocity composition equation of special relativity. Problem 6659, Amer. Math. Monthly98 (1991) 445–446; and its solution in Amer. Math. Monthly100 (1993) 500–502.

    Google Scholar 

  26. Ungar, A. A.,Thomas precession and its associated grouplike structure. Amer. J. Phys.59 (1991) 824–834.

    Google Scholar 

  27. Ungar, A. A.,Gyrogroups. 92T-53-49. Abst. Amer. Math. Soc.13 (1992), 293–294.

    Google Scholar 

  28. Ungar, A. A.,The abstract Lorentz transformation group. Amer. J. Phys.60 (1992), 815–828.

    Google Scholar 

  29. Ungar, A. A.,Gyrogroups. J. Geometry44 (1992), 21–22.

    Google Scholar 

  30. Vigoureux, J. M.,The use of Einstein's addition law in studies of reflection by stratified planar structures. J. Opt. Soc. Amer. A9 (1992), 1313–1319.

    Google Scholar 

  31. You, Y. andUngar, A. A.,Equivalence of two gyrogroup structures on unit balls, preprint.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ungar, A.A. The holomorphic automorphism group of the complex disk. Aeq. Math. 47, 240–254 (1994). https://doi.org/10.1007/BF01832962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01832962

AMS (1991) subject classification

Navigation