Skip to main content
Log in

Domains, motions and regulation in the myosin head

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Amos, L. A., Huxley, H. E., Holmes, K. C., Goody, R. S. &Taylor, K. A. (1982) Structural evidence that myosin heads may interact with two sites on F-actin.Nature, Lond. 299, 467–9.

    Google Scholar 

  • Applegate, D. &Flicker, P. (1987) New states of actomyosin.J. biol. Chem. 262, 6856–63.

    PubMed  Google Scholar 

  • Atkinson, M. A. L. &Korn, E. D. (1986) The purification and characterization of a globular subfragment ofAcanthamoeba myosin II that is fully active when cross-linked to F-actin.J. biol. Chem. 261, 3382–8.

    Google Scholar 

  • Baker, T. S. &Winkelmann, D. A. (1986) Methodology for determining the three dimensional structure of myosin S-1 from electron microscopy of orthogonal thin sections. In proceedings of 44th Annual Meeting EMSA (edited byBailey, G. W.), pp. 26–29. San Francisco: San Francisco Press.

    Google Scholar 

  • Balint, M., Wolf, I., Tarcsafalvi, A., Gergely, J. &Sréter, F. (1978) Location of SH-1 and SH2 in the heavy chain segment of heavy meromyosin.Arch. Biochem. Biophys. 190, 793–9.

    PubMed  Google Scholar 

  • Barlow, D. J., Edwards, M. S. &Thornton, J. M. (1986) Continuous and discontinuous protein antigenic determinants.Nature, Lond. 322, 747–8.

    Google Scholar 

  • Bartlett, P. A. &Marlowe, C. K. (1987) Evaluation of intrinsic binding energy from a hydrogen bonding group in an enzyme inhibitor.Science 235, 569–71.

    PubMed  Google Scholar 

  • Bennett, A. J., Patel, N., Wells, C. &Bagshaw, C. R. (1984) 8-Analino-1-naphthalene sulphonate, a fluorescent probe for the regulatory light chain binding site of scallop myosin.J. Musc. Res. Cell Motility 5, 165–82.

    Google Scholar 

  • Bennett, W. S. &Huber, R. (1984) Structural and functional aspects of domain motions in proteins.CRC Crit. Rev. Biochem. 15, 291–384.

    PubMed  Google Scholar 

  • Bertrand, R., Mornet, D. &Kassab, R. (1987) The presence of arginyl residues at the acto-myosin interface.Biophys. J. 51, 319a.

    Google Scholar 

  • Bhandari, D. G., Trayer, H. R. &Trayer, I. P. (1985) Resonance energy transfer evidence for two attached states of the actomyosin complex.FEBS Lett. 187, 160–6.

    PubMed  Google Scholar 

  • Blake, C. C. F. (1978) Do genes-in-pieces imply proteinsin-pieces?Nature, Lond. 273, 267.

    Google Scholar 

  • Botts, J., Takashi, R., Torgerson, P., Hozumi, T., Muhlrad, A., Mornet, D. &Morales, M. F. (1984) On the mechanism of energy transduction in myosin subfragment 1.Proc. natn. Acad. Sci. USA. 81, 2060–4.

    Google Scholar 

  • Bradley, M. K., Smith, T. F., Lathrop, R. H., Livingston, D. M. &Webster, T. A. (1987) Consensus topography in the ATP binding site of the simian virus 40 and polyoma large tumor antigens.Proc. natn. Acad. Sci. USA. 84, 4026–30.

    Google Scholar 

  • Brándén, C-I. (1980) Relation between structure and function of α/β-proteins.Quart. Rev. Biophys. 13, 317–38.

    Google Scholar 

  • Brandl, C. J., Green, N. M., Korczak, B. &Maclennan, D. H. (1986) Two Ca-ATPase genes: homologies and mechanistic implications of deduced amino acid sequences.Cell 44, 597–607.

    PubMed  Google Scholar 

  • Burghardt, T. P., Ando, T. &Borejdo, J. (1983) Evidence of crossbridge order in contraction of glycerinated skeletal muscle.Proc. natn. Acad. Sci. USA 80, 7515–9.

    Google Scholar 

  • Burke, M., Zaager, S. &Bliss, J. (1987) Substructure of skeletal myosin subfragment 1 revealed by thermal denaturation.Biochemistry 26, 1492–6.

    PubMed  Google Scholar 

  • Castellani, L., Elliott, B. W., Jr,Winkelmann, D. A., Vibert, P. &Cohen, C. (1987) Myosin binding to actin: structural analysis using myosin fragments.J. molec. Biol. 196, 955–60.

    PubMed  Google Scholar 

  • Chaussepied, P., Mornet, D., Audemard, E., Deran-Court, J. &Kassab, R. (1986a) Abolition of ATPase activities of skeletal myosin subfragment 1 by a new selective proteolytic cleavage within the 50-kilodalton heavy chain segment.Biochemistry 25, 1134–40.

    PubMed  Google Scholar 

  • Chaussepted, P., Mornet, D., Audemard, E., Kassab, R., Goodearl, A. J., Levine, B. A. &Trayer, I. P. (1986b) Properties of the alkali light chain-20 kilodalton fragment complex from skeletal myosin heads.Biochemistry 25, 4540–7.

    Google Scholar 

  • Chaussepied, P., Mornet, D. &Kassab, R., (1986c) Identification of polyphosphate recognition sites communicating with actin sites on the skeletal myosin subfragment 1 heavy chain.Biochemistry 25, 6426–32.

    PubMed  Google Scholar 

  • Chaussepied, P., Mornet, D. &Kassab, R., (1986d) Nucleotide trapping at the ATPase site of myosin subfragment 1 by a new interthiol crosslinking.Proc. natn. Acad. Sci. USA 83, 2037–41.

    Google Scholar 

  • Cheung, H. C., Gonsoulin, F. &Garland, F. (1983) Fluorescence energy transfer studies on the proximity of the two essential thiols of myosin subfragment 1.J. biol. Chem. 258, 5775–86.

    PubMed  Google Scholar 

  • Coates, J. H., Criddle, A. H. &Geeves, M. A. (1985) Pressure-relaxation studies of pyrene-labelled actin and myosin subfragment 1 from rabbit skeletal muscle.Biochem. J. 232, 351–6.

    PubMed  Google Scholar 

  • Collins, J. H., Jakes, R., Kendrick-Jones, J., Leszyk, J., Barouch, W., Theibert, J. L., Spiegel, J. &Szent-GyÖrgyi, A. G. (1986) Amino acid sequence of myosin essential light chain from the scallopAequipecten irradians.Biochemistry 25, 7651–6.

    Google Scholar 

  • Cooke, R. (1986) The mechanism of muscle contraction.CRC Crit. Rev. Biochem. 21, 53–118.

    PubMed  Google Scholar 

  • Cooke, R., Crowder, M. S. &Thomas, D. D. (1982) Orientation of spin labels attached to crossbridges in contracting muscle fibres.Nature, Lond. 300, 776–8.

    Google Scholar 

  • Craig, R. W., Greene, L. &Eisenberg, E. (1985) Structure of the myosin-actin complex in the presence of ATP.Proc. natn. Acad. Sci. USA. 82, 3247–51.

    Google Scholar 

  • Cross, R. A. Cross, K. E. &Sobieszek, A. (1986) ATP-linked monomer-polymer equilibrium of smooth muscle myosin: the free folded monomer traps ADP·PiEMBO J. 5, 2637–41.

    PubMed  Google Scholar 

  • Dalbey, R. E., Weiel, J. &Yount, R. G. (1983) Förster energy transfer measurements of thiol 1 to thiol 2 distances in myosin subfragment 1.Biochemistry 22, 4696–706.

    PubMed  Google Scholar 

  • DosRemedios, C. G., Miki, M. &Barden, J. A. (1987) Fluorescence resonance energy transfer measurements of distances in actin and myosin. A critical evaluation.J. Musc. Res, Cell Motility 8, 97–117.

    Google Scholar 

  • Eisenberg, E. &Greene, L. (1980) The relation of muscle biochemistry to muscle physiology.Ann. Rev. Physiol. 42, 293–309.

    Google Scholar 

  • Eisenberg, E. &Hill, T. L. (1985) Muscle contraction and free energy transduction in biological systems.Science 227, 999–1006.

    PubMed  Google Scholar 

  • Fletterick, R. J. &Madsen, N. B. (1980) The structure and related functions of phosphorylase a.Ann. Rev. Biochem. 49, 31–61.

    PubMed  Google Scholar 

  • Flicker, P. F., Wallimann, T. &Vibert, P. (1983) Electron microscopy of scallop myosin: location of regulatory light chains.J. molec Biol. 169, 723–41.

    PubMed  Google Scholar 

  • Frado, L-L. Y. &Craig, R. (1988) Structural changes induced in scallop HMM by Ca2+ and ATP.Biophys. J. 53, 177a.

    Google Scholar 

  • Fry, D. C., Kuby, S. A. &Mildvan, A. S. (1986) ATP-binding site of adenylate kinase: mechanistic implications of its homology withras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.Proc. natn. Acad. Sci. USA,83, 907–11.

    Google Scholar 

  • Go, M. (1981) Correlation of DNA exonic regions with protein structural units in haemoglobin.Nature, Lond. 291, 90–2.

    Google Scholar 

  • Goody, R. S. &Holmes, K. C. (1983) Crossbridges and the mechanism of muscle contraction.Biochim. Biophys. Acta 726, 13–39.

    PubMed  Google Scholar 

  • Griffiths, A. J. &Trayer, I. P. (1987) Selective cleavage of skeletal myosin subfragment 1 to form a 26 kDa-A2 peptide which shows ATP-sensitive actin binding.J. Musc. Res. Cell Motility 8, 69.

    Google Scholar 

  • Harada, Y., Noguchi, A., Kishino, A. &Yanagida, T.(1987) Sliding movement of single actin filaments on one-headed myosin filaments.Nature, Lond. 326, 805–8.

    Google Scholar 

  • Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1985) The proximity of regulatory light chains in scallop myosin.J. molec. Biol. 183, 203–11.

    PubMed  Google Scholar 

  • Hardwicke, P. M. D., Wallimann, T. &Szent-Györgyi, A. G. (1983) Light chain movement and regulation in scallop myosin.Nature, Lond. 301, 478–82.

    Google Scholar 

  • Harrison, S. C., Anderson, J. E., Koudelka, G. B., Mondragon, A., Subbiah, S., Wharton, R. P., Wolberger, C. &Ptashne, M. (1988) Recognition of DNA sequences by the repressor of bacteriophage 434.Biophys. Chem. 29, 31–37.

    PubMed  Google Scholar 

  • Highsmith, S. &Eden, D. (1986) Myosin subfragment 1 has tertiary structural domains.Biochemistry 25, 2237–242.

    PubMed  Google Scholar 

  • Huxley, H. E. (1969) The mechanism of muscle contraction. Science164, 1356–66.

    PubMed  Google Scholar 

  • Huxley, H. E. &Kress, M. (1985) Crossbridge behaviour during muscle contraction.J. Musc. Res. Cell Motility 6, 153–61.

    Google Scholar 

  • Huxley, H. E., Faruqi, A. R., Kress, M., Bordas, J. &Koch, M. H. J. (1982) Time-resolved X-ray diffraction studies of the myosin layer-line reflections during muscle contraction.J. molec. Biol. 158, 637–84.

    PubMed  Google Scholar 

  • Hynes, T. R., Block, S. M., White, B. T. &Spudich, J. A. (1987) Movement of myosin fragmentsin vitro: domains involved in force production.Cell 48, 953–63.

    PubMed  Google Scholar 

  • Ikebe, M. &Hartshorne, D. J. (1985) Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase.J. Biol. Chem. 260, 10027–31.

    PubMed  Google Scholar 

  • Irving, M. (1987) Muscle mechanics and probes of the crossbridge cycle. InFibrous Protein Structure (edited bySquire, J. M. andVibert, P. J.), pp. 495–528. London: Academic Press.

    Google Scholar 

  • Jackson, A. P., Warriner, K., Wells, C. &Bagshaw, C. R. (1986) The actin-activated ATPase of regulated and unregulated scallop heavy meromyosin.FEBS Lett. 197, 154–8.

    Google Scholar 

  • Jackson, A. P., Warriner, K. &Bagshaw, C. R. (1987) Mechanism and control of scallop myosin ATPase.J. Musc. Res. Cell Motility 8, 60.

    Google Scholar 

  • Janin, J. &Wodak, S. J. (1983) Structural domains in proteins and their role in the dynamics of protein function.Prog. Biophys. molec. Biol. 42, 21–78.

    Google Scholar 

  • Jencks, W. P. (1980) The utilization of binding energy in coupled vectorial processes.Adv. Enzymol. 51, 75–106.

    PubMed  Google Scholar 

  • Jencks, W. P. (1981) On the attribution and additivity of binding energies.Proc. natn. Acad. Sci. USA 78, 4046–50.

    Google Scholar 

  • Johnson, K. A. &Taylor, E. W. (1978) Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism.Biochemistry 17, 3432–42.

    PubMed  Google Scholar 

  • Katoh, T. &Lowey, S. (1987) Mapping myosin light chains by immunoelectron microscopy.Biophys. J. 51, 321a.

    Google Scholar 

  • Katoh, T., Katoh, H. &Morita, F. (1985) Actin-binding peptide obtained by the cyanogen bromide cleavage of the 20-kDa fragment of myosin subfragment-1.J. biol. Chem. 260, 6723–7.

    PubMed  Google Scholar 

  • Kendrick-Jones, J., Jakes, R., Tooth, P., Craig, R. &Scholey, J. (1982) Role of the myosin light chains in the regulation of contractile activity. InBasic Biology of Muscles: A Comparative Approach (@#@ edited byTwarog, B. M., Levine, R. J. C. AndDewey, M. M.), pp. 255–72. New York: Raven Press.

    Google Scholar 

  • Kim, P. S. &Baldwin, R. L. (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding.Ann. Rev. Biochem. 51, 459–489.

    PubMed  Google Scholar 

  • Krause, K. L., Volz, K. W. &Lipscomb, W. N. (1987) 2.5Å Structure of aspartate carbamoyltransferase complexed with the bisubstrate analogN-(phosphonacetyl)-L-aspartate.J. molec. Biol. 193, 527–53.

    PubMed  Google Scholar 

  • Labbé, J. P., Chaussepied, P. &Kassab, R. (1987) Interaction of actin with the heavy chain of scallop myosin heads.J. Musc. Res. Cell Motility 8, 69–70.

    Google Scholar 

  • Lu, R. C., Moo, L. &Wong, A. G. (1986) Both the 25-kDa and 50-kDa domains in myosin subfragment 1 are close to the reactive thiols.Proc. natn. Acad. Sci. USA 83, 6392–6.

    Google Scholar 

  • Lymn, R. W. &Taylor, E. W. (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin.Biochemistry 10, 4617–24.

    PubMed  Google Scholar 

  • Maclennan, D. H., Brandl, C. J., Korczak, B. &Green, N. M. (1985) Amino-acid sequence of a Ca2++Mg2+ dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence.Nature, (Lond.)316, 696–700.

    Google Scholar 

  • Mahmood, R. &Yount, R. G. (1984) Photochemical probes of the active site of myosin.J. biol. Chem. 259, 12956–9.

    PubMed  Google Scholar 

  • Mèjean, C., Boyer, M., Labbé, J., Derancourt, J., Benyamin, Y. &Roustan, C. (1986) Antigenic probes locate the myosin subfragment 1 interaction site on the N-terminal part of actin.Biosci. Rep. 6, 493–9.

    Google Scholar 

  • Miller, L. &Reisler, E. (1985) Light chain dependent effects of actin binding on the S-1/S-2 swivel in myosin.J. molec Biol. 182, 271–9.

    PubMed  Google Scholar 

  • Miller, L., Kalnoski, M., Yunossi, Z., Bulinski, J. C. &Reisler, E. (1987) Antibodies directed against N-terminal residues on actin do not block acto-myosin binding.Biochemistry 26, 6064–70.

    PubMed  Google Scholar 

  • Milligan, R. A. &Flicker, P. F. (1987) Structural relationships of actin, myosin and tropomyosin revealed by cryo-electron microscopy.J. cell. Biol. 105, 29–39.

    PubMed  Google Scholar 

  • Mitchell, E. J., Jakes, R. &Kendrick-Jones, J. (1986) Localisation of light chain and actin binding sites on myosin.Eur. J. Biochem. 161, 25–35.

    Google Scholar 

  • Moir, A. J. G., Levine, B. A., Goodearl, A. J. &Trayer, I. P. (1987) The interaction of actin with myosin subfragment 1 and with pPDM-crosslinked S1: a 1HNMR investigation.J. Musc. Res. Cell Motility 8, 68.

    Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981a) Proteolytic approach to structure and function of actin recognition sites in myosin sites in myosin heads.Biochemistry 20, 2110–9.

    PubMed  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E. &Kassab, R. (1981b) Structure of the actin-myosin interface. Nature (London)292, 301–306.

    Google Scholar 

  • Mornet, D., Pantel, P., Audemard, E., Derancourt, J. &Kassab, R. (1985a) Molecular movements promoted by metal nucleotides in the heavy-chain regions of myosin heads from skeletal muscle.J. molec. Biol. 183, 479–89.

    PubMed  Google Scholar 

  • Mornet, D., Ue, K. &Morales, M. F. (1985b) Stabilization of a primary loop in myosin subfragment 1 with a fluorescent crosslinker.Proc. natn. Acad. Sci. 82, 1658–62.

    Google Scholar 

  • Muhlrad, A. &Morales, M. F. (1984) Isolation and partial renaturation of proteolytic fragments of the myosin head.Proc. natn. Acad. Sci. USA 81, 1003–07.

    Google Scholar 

  • Okamoto, Y., &Sekine, T. (1987) A new, smaller actinactivatable myosin subfragment 1 which lacks the 20-kDa, SH1 and SH2 peptide.J. biol. Chem. 262, 7951–4.

    PubMed  Google Scholar 

  • Okamoto, Y., &Yount, R. G. (1985) Identification of an active site peptide of skeletal myosin after photoaffinity labeling withN-(4-azido-2-nitrophenyl)-2-aminoethyl diphosphate.Proc. natn. Acad. Sci. USA 82, 1575–9.

    Google Scholar 

  • Okamoto, Y., Sekine, T., Grammer, J. &Yount, R. G. (1986) The essential light chains constitute part of the active site of smooth muscle myosin.Nature Lond. 324, 78–80.

    PubMed  Google Scholar 

  • Onishi, H., Maita, T., Miyanashi, T., Watanabe, S. &Matsuda, G. (1986) Amino acid sequence of the 203-residue fragment of the heavy chain of chicken gizzard myosin containing the SH1-type cysteine residue.J. Biochem. (Tokyo) 100, 1433–47.

    Google Scholar 

  • Persechini, A. &Hartshorne, D. J. (1981) Phosphorylation of smooth muscle myosin: evidence for cooperativity between the myosin heads.Science 213, 1383–5.

    PubMed  Google Scholar 

  • Prince, H. P., Trayer, H. R., Henry, G. D., Trayer, J. P., Dalgarno, D. C. Levine, B. A., Cary, P. D. &Turner, C. (1981) Proton nuclear magnetic resonance spectroscopy of myosin subfragment 1 isoenzymes.Eur. J. Biochem. 121, 213–9.

    PubMed  Google Scholar 

  • Rajasekharan, K. N., Sivaramakrishnan, M. &Burke, M. (1987) Proximity and ligand-induced movement of interdomain residues in myosin subfragment 1 containing trapped MgADP and MgPPi probed by multifunctional cross-linking.J biol. Chem. 262, 11207–14.

    PubMed  Google Scholar 

  • Reedy, M. K., Holmes, K. C. &Tregear, R. T. (1965) Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle.Nature 207, 1276–80.

    PubMed  Google Scholar 

  • Rossmann, M. G. &Argos, P. (1981) Protein folding.Ann. Rev. Biochem. 50, 497–532.

    PubMed  Google Scholar 

  • Sekine, T. &Keilley, W. W. (1964) The enzymatic properties ofN-ethylmaleimide modified myosin.Biochim. Biophys. Acta 81, 336–45.

    Google Scholar 

  • Stafford, W. F., Szentkiralyi, E. M. &Szent-Györgyi, A. G. (1979) Regulatory properties of single-headed fragments of scallop myosin.Biochemistry 24, 5273–80.

    Google Scholar 

  • Stein, L. A., Schwartz, R. P., Chock, P. B. &Eisenberg, E. (1979) Mechanism of actomyosin adenosine triphosphotase. Evidence that adenosine 5′-triphosphate hydrolysis can occur without dissociation of the actomyosin complex.Biochemistry 18, 3895–3909.

    PubMed  Google Scholar 

  • Strehler, E. E., Strehler-Page, M-A., Perriard, J-C., Periasamy, M. &Nadal-Ginard, B. (1986) Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene.J. molec Biol. 190, 291–317.

    PubMed  Google Scholar 

  • Sutoh, K. (1983) Mapping of actin-binding sites on the heavy chain of myosin subfragment-1.Biochemistry 22, 1579–85.

    PubMed  Google Scholar 

  • Sutoh, K. Yamamoto &Wakabayashi, T. (1984) Electron microscopic visualization of the SH1 thiol of myosin by the use of an avidin-biotin system.J. molec. Biol. 178, 323–39.

    PubMed  Google Scholar 

  • Sutoh, K., Yamamoto, K. &Wakabayashi, T. (1986) Electron microscopic visualization of the ATPase site of myosin by photoaffinity labeling with a biotinylated ADP analog.Proc. natn. Acad. Sci. USA. 83, 212–6.

    Google Scholar 

  • Suzuki, H., Stafford, W. F., III,Slayter, H. S. &Seidel, J. C. (1985) A conformational transition in gizzard heavy meromyosin involving the head-tail junction, resulting in changes in sedimentation coefficient, ATPase activity, and orientation of heads.J. biol. Chem. 260, 14810–7.

    PubMed  Google Scholar 

  • Szentkiralyi, E. M. (1984) Tryptic digestion of scallop S1: evidence for a complex between the two light chains and a heavy-chain peptide.J. Musc. Res. Cell Motility 5, 147–64.

    Google Scholar 

  • Szentkiralyi, E. M. (1987) An intact heavy chain at the actin-subfragment 1 interface is required for the ATPase activity of scallop myosin.J. Muse. Res. Cell Motility 8, 349–57.

    Google Scholar 

  • Taylor, K. A. &Amos, L. A. (1981) A new model for the geometry of the binding of myosin crossbridges to muscle thin filaments.J. molec Biol. 147, 297–324.

    PubMed  Google Scholar 

  • Thomas, D. d. (1987) Spectroscopic probes of muscle cross-bridge rotation.Ann. Rev. Physiol. 49, 691–709.

    Google Scholar 

  • Titus, M. A., Ashiba, G. &Szent-Györgyi, A. G. (1987) The effect of IASL modification on the calcium control of the actomyosin ATPase.Biophys. J. 51, 28a.

    Google Scholar 

  • Tokunaga, M., Sutoh, K., Toyoshima, C. &Wakabayashi, T. (1987) Location of the ATPase site of myosin determined by three-dimensional electron microscopy.Nature, Lond. 329, 635–8.

    Google Scholar 

  • Toyoshima, C. &Wakabayashi, T. (1985) Three-dimensional image analysis of the complex of thin filaments and myosin molecules from skeletal muscle. IV. Reconstruction from minimal- and high-dose images of the actin-tropomyosin-myosinsubfragment 1 complex.J. Biochem. (Tokyo)97, 219–43.

    Google Scholar 

  • Tronrud, D. E., Holden, H. M. &Matthews, B. W. (1987) Structure of two thermolysin-inhibitor complexes that differ by a single hydrogen bond.Science 235, 571–4.

    PubMed  Google Scholar 

  • Vibert, P. J. (1988) Domain structure of the myosin head in correlation-averaged images of shadowed molecules.J. Musc. Res. Cell Motility 9, 147–55.

    Google Scholar 

  • Vibert, P. J. &Craig, R. (1982) Three-dimensional reconstruction of thin filaments decorated with a Ca++ regulated myosin.J. Molec Biol. 157, 299–319.

    PubMed  Google Scholar 

  • Vibert, P. J., Cohen, C., Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1985) Electron microscopy of cross-linked scallop myosin.J. molec Biol. 183, 283–6.

    PubMed  Google Scholar 

  • Vibert, P. J., Szentkiralyi, E. M., Hardwicke, P. M. D., Szent-Györgyi, A. G. &Cohen, C. (1986) Structural models for the regulatory switch of myosin.Biophys. J. 49, 131–3.

    Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J. &Gay, N. J. (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.EMBO J. 1, 945–51.

    PubMed  Google Scholar 

  • Walker, M., Knight, P. &Trinick, J. (1985) Negative staining of myosin molecules.J. molec. Biol. 184, 535–42.

    PubMed  Google Scholar 

  • Waller, G. S. &Lowey, S. (1985) Myosin subunit interactions: localization of the alkali light chains.J. biol. Chem. 260, 14368–73.

    PubMed  Google Scholar 

  • Warrick, H. M. &Spudich, J. A. (1987) Myosin structure and function in cell motility.Ann. Rev. Cell Biol. 3, 379–421.

    PubMed  Google Scholar 

  • Warrick, H. M., deLozanne, A., Leinwand, L. A. &Spudich, J. A. (1986) Conserved protein domains in a myosin heavy chain gene fromDictyostelium discoideum.Proc natn. Acad. Sci. USA 83, 9433–7.

    Google Scholar 

  • Weeds, A. G. &Pope, B. (1977) Studies on the chymotryptic digestion of myosin. Effects of divalent cations on proteolytic susceptibility.J. molec. Biol. 111, 129–57.

    PubMed  Google Scholar 

  • Wells, C. &Bagshaw, C. R. (1985) Calcium regulation of molluscan myosin ATPase in the absence of actin.Nature, Lond. 313, 696–7.

    Google Scholar 

  • Wells, C., Warriner, K. E. &Bagshaw, C. R. (1985) Fluorescence studies on the nucleotide- and Ca-binding domains of molluscan myosin.Biochem. J. 231, 31–8.

    PubMed  Google Scholar 

  • Wells, J. A. &Yount, R. G. (1979) Active site trapping of nucleotides by crosslinking two sulfhydryls in myosin subfragment 1.Proc. natn. Acad. Sci. USA 76, 4966–70.

    Google Scholar 

  • Wells, J. A., Knoeber, C., Sheldon, M. C., Werber, M. M. &Yount, R. G. (1980) Crosslinking of myosin S1.J. biol. Chem. 255, 11135–40.

    PubMed  Google Scholar 

  • Winkelmann, D. A. &Lowey, S. (1986) Probing myosin head structure with monoclonal antibodies.J. molec. Biol. 188, 595–612.

    Google Scholar 

  • Winkelmann, D. A., Lowey, S. &Press, J. (1983) Monoclonal antibodies localize changes in myosin heavy chain isozymes during avian myogenesis.Cell 34, 295–306.

    PubMed  Google Scholar 

  • Winkelmann, D. A., Almeda, S., Vibert, P. J. &Cohen, C. (1984) A new myosin fragment: visualization of the regulatory domain.Nature, Lond. 307, 758–60.

    Google Scholar 

  • Winkelmann, D. A., Mekeel, H. &Rayment, I. (1985) Packing analysis of crystalline myosin subfragment-1: implications for the size and shape of the myosin head.J. molec Biol. 181, 487–501.

    PubMed  Google Scholar 

  • Yamamoto, K. &Sekine, T. (1980) Interaction of myosin subfragment 1 with actin. III. Effect of cleavage of the subfragment 1 heavy chain on its interaction with actin.J. Biochem. (Tokyo)87, 219–26.

    Google Scholar 

  • Yamamoto, K., Sekine, T. &Sutoh, K. (1984) Spatial relationship between SH1 and the actin binding site on myosin subfragment-1 surface.FEBS Lett. 176, 75–8.

    PubMed  Google Scholar 

  • Yanagida, T. (1981) Angles of nucleotides bound to crossbridges in glycerinated muscle fibres at various concentrations of ɛATP, ɛADP and ɛAMPPNP detected by polarized fluorescence.J. molec Biol. 146, 539–60.

    PubMed  Google Scholar 

  • Yanagida, T. (1985) Angle of active site of myosin heads in contracting muscle during sudden length changes.J. Musc. Cell Motility 6, 43–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of our beloved friend and colleague Eva M. Szentkiralyi (18 September 1925–22 March 1988) who contributed so greatly to this field.

When this review was completed, we learned that Yanagisawaet al. [J. molec. Biol. 198, 143–57 (1987)] had suggested a model for chain folding and function in the myosin head that is similar at several points to the one described here; they do not consider the question of regulation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vibert, P., Cohen, C. Domains, motions and regulation in the myosin head. J Muscle Res Cell Motil 9, 296–305 (1988). https://doi.org/10.1007/BF01773873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01773873

Keywords

Navigation