Skip to main content
Log in

Urinary caffeine metabolites in man

Age — dependant changes and pattern in various clinical situations

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

In an exploratory study the 24-h urinary excretion pattern of caffeine and 14 of its major metabolites was studied in 32 volunteers (adults, adolescents and children), 14 patients either with end stage renal disease or liver cirrhosis, 7 heavy smokers and 27 patients on therapy with cimetidine, allopurinol, theophylline or phenytoin. Caffeine and its metabolites were quantified by UV-absorption after liquid/liquid-extraction and HPLC-separation, which ensured proper analysis of 1-methyluric acid.

In adults the renal excretion of caffeine derivatives corresponded to an intake of 509 mg caffeine/day, with 1-methyluric acid as the predominant metabolite. About 69% of caffeine was degraded by the paraxanthine pathway, and theobromine- (19%) and the theophylline pathway (14%) were less important. The ratio of paraxanthine formation to urinary caffeine concentration ( = clearance equivalent) was about 2.2 ml·min−1·kg−1 in adults, and the corresponding ratios for theophylline and theobromine were 0.43 ml·min−1·kg−1 and 0.59 ml·min−1·kg−1, respectively. As expected, caffeine degradation was impaired in patients with cirrhosis and was increased in persons who smoked heavily or who were on phenytoin therapy.

The results document the possibility of noninvasively investigating gross differences in caffeine disposition by analysis of the urinary pattern of its metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Conney AH, Pantuck EJ, Kuntzman R, Kappas KE, Anderson KE, Alvares AP (1977) Nutrition and biotransformation in man. Clin Pharmacol Ther 22: 707–720

    PubMed  Google Scholar 

  2. Vesell ES (1977) Genetic and environmental factors affecting drug disposition in man. Clin Pharmacol Ther 22: 659–679

    PubMed  Google Scholar 

  3. Caldwell J (1985) Glucuronic acid conjugation in the context of the metabolic conjugation of xenobiotics. In: Matern S, Bock KW, Gerok W (eds) Advances in glucuronide formation. MTP Press, Lancaster Boston The Hague, pp 7–20

    Google Scholar 

  4. Bircher J (1983) Quantitative assessment of deranged hepatic function: a missed opportunity. Semin Liver Dis 3: 275–284

    PubMed  Google Scholar 

  5. Bock KW, Wiltfang J, Blume R, Ullrich D, Bircher J (1987) Paracetamol as test drug to determine glucuronide formation in man. Effects of inducers and smoking. Eur J Clin Pharmacol 31: 677–683

    PubMed  Google Scholar 

  6. Ashton CH (1987) Caffeine and health. Br Med J 295: 1293–1294

    Google Scholar 

  7. Barone JJ, Roberts H (1984) Human consumption of caffeine. In: Dews PB (ed) Caffeine: perspectives from recent research. Springer, Berlin Heidelberg New York, pp 59–73

    Google Scholar 

  8. Arnaud MJ (1984) Products of metabolism of caffeine. In: Dews PB (ed) Caffeine: perspectives from recent research. Springer, Berlin, Heidelberg New York, pp 3–38

    Google Scholar 

  9. Grant DM, Tang BK, Kalow W (1983) Variability in caffeine metabolism. Clin Pharmacol Ther 33: 591–602

    PubMed  Google Scholar 

  10. Blanchard J, Sawers SJA (1983) The renal clearance of caffeine in man. Eur J Clin Pharmacol 24: 93–98

    PubMed  Google Scholar 

  11. Tarka SM, Arnaud MJ, Dvorchik BH, Vesell ES (1983) Theobromine kinetics and disposition. Clin Pharmacol Ther 34: 594–555

    Google Scholar 

  12. Birkett DJ, Dahlqvist R, Miners JO, Lelo A, Billing B (1985) Comparison of theophyline and theobromine metabolism in man. Drug Metab Dispos 13: 725–728

    PubMed  Google Scholar 

  13. Blanchard J, Sawers SJA, Jonkman JHG, Tang-Liu DD (1985) Comparison of the urinary metabolite profile of caffeine in young and elderly males. Br J Clin Pharmacol 19: 225–232

    PubMed  Google Scholar 

  14. Lelo A, Miners JO, Robson R, Birkett DJ (1986) Assessment of caffeine exposure: caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Clin Pharmacol Ther 30: 54–59

    Google Scholar 

  15. Burg AW (1975) How much caffeine is in the cup. Tea Coffee Trade J 147: 40–42

    Google Scholar 

  16. Gilbert RM, Marshman JA, Schwieder M, Berg R (1976) Caffeine content of beverages as consumed. Can Med Assoc J 114: 205–208

    PubMed  Google Scholar 

  17. Price Evans DA, Mahgoub A, Sloan TP, Idle JR, Smith RL (1980) A family and population study of genetic polymorphism of debrisoquine oxidation in the white British populations. J Med Genet 17: 102–105

    PubMed  Google Scholar 

  18. Meier PJ, Mueller HK, Dick B, Meyer UA (1983) Hepatic monooxygenase activities in subjects with a genetic defect in drug oxidation. Gastroenterology 85: 682–692

    PubMed  Google Scholar 

  19. Miotti T, Bircher J, Preisig R (1988) The 30-minute aminopyrine breath test: optimization of sampling times after intravenous administration of14C-aminopyrine. Digestion 39: 241–250

    PubMed  Google Scholar 

  20. Trang JM, Blanchard J, Conrad KA, Harrison GG (1985) Relationship between total body clearance of caffeine and urin flow in elderly men. Biopharm Drug Dispos 6: 51–56

    PubMed  Google Scholar 

  21. Sachs A (1984) Angewandte Statistik, 6te Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  22. Lindsey AS, Sharman RK (1981) Some observations on the stability of uric acid in alkaline solutions. Anal Lett 14: 799–811

    Google Scholar 

  23. Löffler W, Gröbner W, Medina R, Zöllner N (1982) Influence of dietary purines on pool size, turnover, and excretion of uric acid balance conditions. Res Exp Med 181: 113–123

    Google Scholar 

  24. McNabb RA, McNabb FMA (1980) Physiological chemistry of uric acid: solubility colloid and ion-binding properties. Comp Biochem Pharmacol 67: 27–34

    Google Scholar 

  25. Scott NR, Chakraborty J, Marks V (1986) Urinary metabolites of caffeine in pregnant woman. Br J Clin Pharmacol 22: 475–478

    PubMed  Google Scholar 

  26. Callahan MM, Robertson RS, Branfman AR, McComish MF, Yesair DW (1983) Comparison of caffeine metabolism in three nonsmoking populations after oral administration of radiolabeled caffeine. Drug Metab Dispos 11: 211–217

    PubMed  Google Scholar 

  27. Bonati M, Latini R, Galletti F, Young JF, Tognoni G, Garattini S (1982) Caffeine disposition after oral doses. Clin Pharmacol Ther 32: 98–106

    PubMed  Google Scholar 

  28. Morgan KJ, Stultes VJ, Zabrik ME (1982) Amount and dietary sources of caffeine and saccharine intake by individuals ages 5 to 18 years. Regul Toxicol Pharmacol 2: 296–307

    PubMed  Google Scholar 

  29. Albeit ML, Niklas TA, Frank GC, Webber LS, MH Miners, Berenson GS (1988) Caffeine intakes of children from a biracial population: the Bogalusa heart study. J Am Diet Assoc 88: 466–471

    PubMed  Google Scholar 

  30. Zoumas BL, Kreiser WR, Martin RA (1980) Theobromine and caffeine content of chocolate products. J Food Sci 45: 314–315

    Google Scholar 

  31. Lelo A, Miners JO, Robson RA, Birkett DJ (1986) Quantitative assessment of caffeine partial clearances in man. Br J Clin Pharmacol 22: 183–186

    PubMed  Google Scholar 

  32. Tang-Liu DD, Williams RL, Riegelman S (1983) Disposition of caffeine and its metabolites in man. J Pharmacol Exp Ther 224: 180–185

    PubMed  Google Scholar 

  33. Grant DM, Tang BK, Kalow W (1984) A simple test for acetylator phenotype using caffeine. Br J Clin Pharmacol 17: 459–464

    PubMed  Google Scholar 

  34. Lelo A, Miners JO, Robson RA, Birkett DJ (1986) Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man. Br J Clin Pharmacol 22: 177–182

    PubMed  Google Scholar 

  35. Jost G, Wahlländer A, Mandach U v., Preisig R (1987) Overnight salivary caffeine clearance: a liver function test suitable for routine use. Hepatology 7: 338–344

    PubMed  Google Scholar 

  36. Pisi E, Checchia GA, Bianchi GP, Fabbri A, Zoli M, Marchesini G (1988) Measurement of liver function using caffeine as the test compound. Comparison between standard clearance technique and one-sample simplified procedure. In: Gentilini P, Dianzani MU (eds) Pathophysiology of the liver. Elsevier, pp 165–170

  37. Miners JO, Attwood J, Wing LMH, Birkett DJ (1985) Influence of cimetidine, sulfinpyrazone, and cigarette smoking on theobromine metabolism in man. Drug Metab Dispos 11: 598–601

    Google Scholar 

  38. Grygiel JJ, Miners JO, Drew R, Birkett DJ (1984) Differential effects of cimetidine on theophylline metabolic pathways. Eur J Clin Pharmacol 26: 335–340

    PubMed  Google Scholar 

  39. Grant DM, Tang BK, Campbell ME, Kalow W (1986) Effect of allopurinol on caffeine disposition in man. Br J Clin Pharmacol 21: 454–458

    PubMed  Google Scholar 

  40. Broughton LJ, Rogers HJ (1981) Decreased systemic clearance of caffeine due to cimetidine. Br J Clin Pharmacol 12: 98–106

    Google Scholar 

  41. Wietholtz H, Voegelin M, Arnaud MJ, Bircher J, Preisig R (1981) Assessment of the cytochrome P-448 dependant liver enzyme system by a caffeine breath test. Eur J Clin Pharmacol 21: 53–59

    PubMed  Google Scholar 

  42. Parson WD, Neims AH (1978) Effect of smoking on caffeine clearance. Clin Pharmacol Ther 24: 40–45

    PubMed  Google Scholar 

  43. Campbell ME, Spielberg StP, Kalow W (1987) A urinary metabolite ratio that reflects systemic caffeine clearance. Clin Pharmacol Ther 42: 157–165

    PubMed  Google Scholar 

  44. Lambert GH, Schoeller DA, Kotake AN, Flores C, Hay D (1986) The effect of age, gender, and sexual maturation on the caffeine breath test. Dev Pharmacol Ther 9: 375–388

    PubMed  Google Scholar 

  45. Tang-Liu DD, Williams RL, Riegelman S (1982) Nonlinear theophylline elimination. Clin Pharmacol Ther 31: 358–369

    PubMed  Google Scholar 

  46. Gundert-Remy U, Hildebrandt R, Hengen N, Weber E (1983) Non-linear elimination process of theophylline. Eur J Clin Pharmacol 24: 71–78

    PubMed  Google Scholar 

  47. Walther H, Banditt P, Köhler E (1983) Aussagefähigkeit von Coffeinwerten in Serum, Speichel und Urin — Ermittlung von pharmkokinetischen Daten durch non-invasive Methoden bei psychopharmakologischen Untersuchungen. Pharmacopsychiat 16: 166–170

    Google Scholar 

  48. Jenne JW, Nagasawa HT, Thompson RD (1976) Relationship of urinary metabolites of theophylline to serum theophylline levels. Clin Pharmacol Ther 19: 375–381

    PubMed  Google Scholar 

  49. Loughnan PM, Sitar DS, Ogilvie RI, Eisen A, Fox Z, Neims AH (1976) Pharmacokinetic analyis of the disposition of intravenous theophylline in young children. J Pediatr 88: 874–879

    PubMed  Google Scholar 

  50. Aranda J, Collinge J, Zinman R, Watters G (1979) Maturation of caffeine elimination in infancy. Arch Dis Child 54: 946–949

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, D., Compagnone, D., Münch, B. et al. Urinary caffeine metabolites in man. Eur J Clin Pharmacol 43, 167–172 (1992). https://doi.org/10.1007/BF01740665

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01740665

Key words

Navigation