Skip to main content
Log in

What is latch? New ideas about tonic contraction in smooth muscle

  • News and Views
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Smooth muscles have traditionally been classified as phasic or tonic, the tonic muscles being those which maintain a steady tension indefinitely with a low consumption of energy. Until ten years ago it was considered that the differences between smooth muscle types reflected different innervation or excitation-contraction coupling. However, recent work makes it clear that the contractile apparatus itself is adapted in tonic muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Brenner, B. (1987) Mechanical and structural approaches to correlation of crossbridge action in muscle with actomyosin ATPase in solution.Ann. Rev. Physiol. 49, 655–72.

    Google Scholar 

  • Chattergee, M. &Murphy, R. A. (1983) Ca2+-dependent tension maintenance without myosin phosphorylation in ‘skinned’ smooth muscle.Science 221, 464–6.

    PubMed  Google Scholar 

  • Cross, R. A. (1988) Smooth muscle contraction. What is 10-S myosin for?J. Musc. Res. Cell Motility 9, 108–10.

    Google Scholar 

  • Dantzig, J. A., Walker, J. W., Trentham, D. R. &Goldman, Y. E. (1988) Relaxation of muscle fibres with ATP γ-S and by laser photolysis of caged ATP γ-S: evidence for Ca2+-dependent affinity of rapidly detaching zero-force crossbridges.Proc. natn. Acad. Sci. U.S.A. 85, 6716–20.

    Google Scholar 

  • Driska, S. P. &Hartshorne, D. J. (1975) The contractile properties of smooth muscle. Properties and components of a calcium-sensitive actomyosin from chicken gizzard.Arch. Biochem. Biophys. 167, 203–12.

    PubMed  Google Scholar 

  • Guth, K. &Junge, J. (1982) Low Ca2+ impedes crossbridge detachment in chemically skinned taenia coli.Nature 300, 775–6.

    PubMed  Google Scholar 

  • Hai, C. M. &Murphy, R. M. (1988a) Crossbridge phosphorylation and regulation of latch state in smooth muscles.Am. J. Physiol. 255, C99–106.

    Google Scholar 

  • Hai, C. M. &Murphy, R. A. (1988b) Regulation of shortening velocity by crossbridge phosphorylation in smooth muscle.Am. J. Physiol. 255, C86–94.

    PubMed  Google Scholar 

  • Hartshorne, D. J. &Gorecka, A. (1981) Biochemistry of the contractile proteins of smooth muscle. InHandbook of Physiology, Section 2,The Cardiovascular system, Vol. II, Vascular smooth muscle (edited byBohr, D. F., Somlyo, A. P. &Sparks, H. V.) pp. 93–120. Bethesda, Maryland: Am Physiol Soc.

    Google Scholar 

  • Hemric, M. E. &Chalovich, J. M. (1988) Effect of caldesmon on the ATPase activity and binding of smooth and skeletal myosin subfragments to actin.J. biol. Chem. 263, 1878–85.

    PubMed  Google Scholar 

  • Hoar, P. E., Pato, M. D. &Kerrick, W. G. (1985) Myosin light chain phosphatase — effect on the activation and relaxation of gizzard smooth muscle skinned fibres.J. biol. Chem. 260, 8760–4.

    PubMed  Google Scholar 

  • Horiuchi, K. Y., Miyata, H. &Chacko, S. (1986) Modulation of smooth muscle actomyosin ATPase by thin filament associated proteins.Biochem. Biophys. Res. Commun. 136, 962–8.

    PubMed  Google Scholar 

  • Ikebe, M. &Reardon, S. (1988) Binding of caldesmon to smooth muscle myosin.J. biol. Chem. 263, 3055–8.

    PubMed  Google Scholar 

  • Imai, M., Dunn, L., Lee, R., Cook, R., May, G. &Bryan, J. (1988) Molecular cloning of caldesmon cDNAJ. Cell Biol. 107, 681a.

    Google Scholar 

  • Ishii, N., Simpson, A. W. M. &Ashley, C. C. (1988) Intracellular free calcium ([Ca2+]i) and the ‘catch’ contraction in isolated molluscan smooth-muscle (ABRM) cells.J. Musc. Res. Cell Motility 9, 463.

    Google Scholar 

  • Kamm, K. E. &Stull, J. T. (1985) The function of myosin light chain kinase phosphorylation in smooth muscle.Ann. Rev. Pharmac. 25, 593–620.

    Google Scholar 

  • Lash, J. A., Sellers, J. R. &Hathaway, D. R. (1986) The effects of caldesmon on smooth muscle heavy actomeromyosin ATPase activity and binding of heavy meromyosin to actin.J. biol. Chem. 261, 16155–60.

    PubMed  Google Scholar 

  • Marston, S. B. (1982) The regulation of smooth muscle contractile proteins.Progr. Biophys. molec. Biol. 41, 1–41.

    Google Scholar 

  • Marston, S. B. (1988) Aorta caldesmon inhibits actin activation of thiophosphorylated heavy meromyosin MgATPase activity by slowing the rate of product release.FEBS Lett. 238, 147–51.

    PubMed  Google Scholar 

  • Marston, S. B. (1989) A tight binding interaction between smooth muscle native thin filaments and heavy meromyosin in the presence of MgATP.J. biol. Chem. (submitted).

  • Marston, S. B., Pritchard, K., Redwood, C. &Taggart, M. (1988a) Ca2+ regulation of the thin filaments: biochemical mechanism and physiological role.Trans. Biochem. Soc. 16, 494–7.

    Google Scholar 

  • Marston, S. B., Redwood, C. S. &Lehman, W. (1988b) Reversal of caldesmon function by anti-caldesmon antibodies confirms its role in the calcium regulation of vascular smooth muscle thin filaments.Biochem. Biophys. Res. Commun. 155, 197–203.

    PubMed  Google Scholar 

  • Marston, S. B. &Smith, C. W. J. (1984) Purification and properties of Ca2+-regulated thin filaments and F-actin from sheep aorta smooth muscle.J. Musc. Res. Cell Motility 5, 559–75.

    Google Scholar 

  • Marston, S. B., Trevett, R. M. &Walters, M. (1980) Calcium ion regulated thin filaments from vascular smooth muscle.Biochem. J. 185, 355–65.

    PubMed  Google Scholar 

  • Moreland, S., Moreland, R. S. &Singer, H. A. (1986) Apparent dissociation between myosin light chain phosphorylation and maximal velocity of shortening in KCl depolarised swine carotid artery: Effect of temperature and KC1 concentration.Pflügers Arch. ges. Physiol. 408, 139–45.

    Google Scholar 

  • Morgan, J. P. &Morgan, K. G. (1984) Stimulus specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein.J. Physiol., Lond. 351, 155–67.

    Google Scholar 

  • Morgan, K. G., Brozovich, F. V. &Jiang, M. J. (1988) Measurements of intracellular calcium concentration in mammalian vascular muscle cells during agonist induced contractions.Trans. Biochem. Soc. 16, 493.

    Google Scholar 

  • Ngai, P. K. &Walsh, M. P. (1987) The effects of phosphorylation on smooth muscle caldesmon.Biochem. J. 244, 417–25.

    PubMed  Google Scholar 

  • Park, S. &Rasmussen, H. (1986) Carbachol-induced protein phosphorylation changes in bovine tracheal smooth muscle.J. biol. Chem. 261, 15731–9.

    Google Scholar 

  • Pfitzer, G., Takai, A. &Ruegg, J. C. (1989) The coupling between myosin phosphorylation and contraction in smooth muscle.J. Musc. Res. Cell Motility 10, 166.

    Google Scholar 

  • Pritchard, K. P. &Marston, S. B. (1989) Ca2+-Calmodulin binding to caldesmon and the caldesmonactin-tropomyosin complex. Its role in Ca2+ regulation of the activity of synthetic smooth muscle thin filaments.Biochem. J. 257 (in press).

  • Rasmussen, H., Takuwa, Y. &Park, S. (1987) Protein kinase C in the regulation of smooth muscle contraction.FASEB J. 1, 177–85.

    PubMed  Google Scholar 

  • Rembold, C. M. &Murphy, R. A. (1988) Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial muscle.Circ. Res. 63, 593–603.

    PubMed  Google Scholar 

  • Ruegg, J. C. (1971) Smooth muscle tone.Physiol. Rev. 51, 201–48.

    PubMed  Google Scholar 

  • Sellers, J. R., Eisenberg, E. &Adelstein, R. S. (1982) The binding of smooth muscle heavy meromyosin to actin in the presence of ATP.J. biol. Chem. 257, 13880–2.

    PubMed  Google Scholar 

  • Small, J. V., Furst, D. O. &Demey, J. (1986) Localisation of filamin in smooth muscle.J. cell. Biol. 102, 210–20.

    PubMed  Google Scholar 

  • Smith, C. W. J., Pritchard, K. &Marston, S. (1987) The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin.J. biol. Chem. 262, 116–22.

    PubMed  Google Scholar 

  • Sobieszek, A. &Bremel, R. D. (1975) Preparation and properties of vertebrate smooth muscle myofibrils and actomyosin.Eur. J. Biochem. 55, 49–60.

    PubMed  Google Scholar 

  • Sobue, K., Morimoto, K., Inui, M., Kanda, K. &Kakiuchi, S. (1982) Control of actin-myosin interaction of gizzard smooth muscle by calmodulin and caldesmon linked flip-flop mechanism.Biomed. Res. 3, 188–96.

    Google Scholar 

  • Sutherland, C. &Walsh, M. P. (1989) Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin.J. biol. Chem. (in press).

  • Taggart, M. J. &Marston, S. B. (1988) the effects of vascular smooth muscle caldesmon on force production of ‘desensitised’ skeletal muscle fibres.FEBS Lett. 242, 171–4.

    PubMed  Google Scholar 

  • Ueki, N., Sobue, K., Kanda, T. &Higashino, K. (1987) Expression of high and low molecular weight caldesmons during phenotypic modulation of smooth muscle cells.Proc. natn. Acad. Sci. U.S.A. 84, 9049–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marston, S.B. What is latch? New ideas about tonic contraction in smooth muscle. J Muscle Res Cell Motil 10, 97–100 (1989). https://doi.org/10.1007/BF01739965

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01739965

Navigation