Skip to main content
Log in

Structural changes induced in scallop heavy meromyosin molecules by Ca2+ and ATP

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

We have used physicochemical and ultrastructural methods to investigate the effects of Ca2+ and ATP on the structure of purified heavy meromyosin (HMM) from the striated adductor muscle of the scallop, a species with myosin-linked regulation. Using papain as a structural probe, we found that, in the presence of ATP, the head/tail junction was five times more susceptible to digestion at high levels of Ca2+ than at low levels.wBy HPLC gel filtration, two fractions of scallop HMM with different Stokes radii were detected in the presence of ATP at low Ca2+, while at high Ca2+ a single peak with the larger Stokes radius predominated. Electron microscopy of rotary-shadowed HMM suggested that molecules with the smaller Stokes radius had their heads bent back towards their tails, while those with the larger radius had heads pointing away from the tail. The number of molecules with their heads bent back decreased at high Ca2+ levels. The data also showed that in the absence of ATP or at high salt, HMM molecules behaved similarly to those in the presence of ATP at high Ca2+.

These results suggest that scallop myosin heads can exist in two conformations (heads down towards the tail and heads up away from the tail) and that the equilibrium between these two conformations is altered by the concentrations of salt, ATP and Ca2+. However, the equilibrium between the two forms appears to be too slow to be involved in regulating contraction. The ‘heads-down’ configuration may instead be related to the inactive, folded (10S) form of scallop myosin and possibly involved in filament assembly during development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelstein, R. S. &Eisenberg, E. (1980) Regulation and kinetics of the actin-myosin-ATP interaction.Ann. Rev. Biochem. 49, 921–56.

    PubMed  Google Scholar 

  • Ankrett, R. J., Rowe, A. J., Cross, R. A., Kendrick-Jones, J. &Bagshaw, C. R. (1991) A folded (1OS) conformer of myosin from a striated muscle and its implications for regulation of ATPase activity.J. Mol. Biol. 217, 323–35.

    PubMed  Google Scholar 

  • Bennett, A. J., Patel, N., Wells, C. &Bagshaw, C. R. (1984) 8-analino-1-naphthalenesulphonate, a fluorescent probe for the regulatory light chain binding site of scallop myosin.J. Muscle Res. Cell Motil. 5, 165–82.

    PubMed  Google Scholar 

  • Castellani, L., Eliott, Jr, B. W., Winkelmann, D. A., Vibert, P. &Cohen, C. (1987) Myosin binding to actin; structural analysis using myosin fragments.J. Mol. Biol. 196, 955–60.

    PubMed  Google Scholar 

  • Chantler, P. D. &Szent-Györgyi, A. G. (1978) Spectroscopic studies on invertebrate myosins and light chains.Biochemistry 17, 5440–8.

    PubMed  Google Scholar 

  • Collins, J. H., Jakes, R., Kendrick-Jones, J., Leszyk, J., Barouch, W., Theibert, J. L., Spiegel, J. &Szent-Györgyi, A. (1986) Amino acid sequence of myosin essential light chain from the scallop Aequipecten irradians.Biochemistry 25, 7651–6.

    PubMed  Google Scholar 

  • Craig, R., Szent-Györgyi, A. G., Beese, L., Flicker, P., Vibert, P. &Cohen, C. (1980) Electron microscopy of thin filaments decorated with a Ca2+-regulated myosin.J. Mol. Biol. 140, 35–55.

    PubMed  Google Scholar 

  • Craig, R., Smith, R. &Kendrick-Jones, J. (1983) Light chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules.Nature (Lond.)302, 436–9.

    Google Scholar 

  • Craig, R., Padrón, R. &Kendrick-Jones, J. (1987) Structural changes accompanying phosphorylation of tarantula muscle myosin filaments.J. Cell Biol. 105, 1319–27.

    PubMed  Google Scholar 

  • Elliott, A. &Offer, G. (1978) Shape and flexibility of the myosin molecule.J. Mol. Biol. 123, 505–19.

    PubMed  Google Scholar 

  • Flicker, P. F., Wallimann, T. &Vibert, P. (1983) Electron microscopy of scallop myosin: location of regulatory light chains.J. Mol. Biol. 169, 723–41.

    PubMed  Google Scholar 

  • Frado, L.-L. Y. &Craig, R. (1988) Structural changes induced in scallop HMM by Ca2+ and ATP.Biophys. J. 53, 177a.

    Google Scholar 

  • Frado, L.-L. Y. &Craig, R. (1989) Structural changes induced in Ca2+-regulated myosin filaments by Ca2+ and ATP.J. Cell Biol. 109, 529–38.

    PubMed  Google Scholar 

  • Hardwicke, P. M. D., Wallimann, T. &Szent-Györgyi, A. G. (1983) Light-chain movement and regulation in scallop myosin.Nature (Lond.) 301, 478–82.

    Google Scholar 

  • Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1985) Proximity of regulatory light chains in scallop myosin.J. Mol. Biol. 183, 203–11.

    Google Scholar 

  • Highashihara, M., Frado, L.-L. Y., Craig, R. &Ikebe, M. (1989) Inhibition of conformational change in smooth muscle myosin by a monoclonal antibody against the 17-kDa light chain.J. Biol. Chem. 264, 5218–25.

    PubMed  Google Scholar 

  • Ikebe, M. &Ogihara, S. (1982) Phosphorylation-dependent and ATP-induced changes in structural array in gizzard myosin filament bundles.J. Biochem. (Tokyo) 92, 1973–7.

    Google Scholar 

  • Ikebe, M. &Hartshorne, D. J. (1984) Conformation-dependent proteolysis of smooth-muscle myosin.J. Biol. Chem. 259, 11639–42.

    PubMed  Google Scholar 

  • Ikebe, M., Hinkins, S. &Hartshorne, D. J. (1983) Correlation of enzymatic properties and conformation of smooth muscle myosin.Biochemistry 22, 4580–7.

    PubMed  Google Scholar 

  • Jackson, A. P., Warriner, K. E., Wells, C. &Bagshaw, C. R. (1986) The actin-activated ATPase of regulated and unregulated scallop heavy meromyosin.FEBS Lett. 197, 154–8.

    Google Scholar 

  • Kendrick-Jones, J. &Scholey, J. M. (1981) Myosin-linked regulatory systems.J. Muscle Res. Cell Motil. 2347–72.

    Google Scholar 

  • Kendrick-Jones, J., Lehman, W. &Szent-GYörgyi, A. G. (1970) Regulation in molluscan muscles.J. Mol. Biol. 54, 313–26.

    PubMed  Google Scholar 

  • Kendrick-Jones, J., Jakes, R., Tooth, P., Craig, R. &Scholey, J. (1982) Role of the myosin light chain in the regulation of contractile activity. InBasic Biology of Muscles: A Comparative Approach (edited by Twarog, B. M., Levine, R. J. C. & Dewey, M. M.) pp. 255–72. New York: Raven Press.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (London) 227, 680–5.

    Google Scholar 

  • Laurent, T. C. &Killander, J. (1964) A theory of gel filtration and its experimental verification.J. Chromatog. 14, 317–30.

    Google Scholar 

  • Lehman, W. &Szent-Györgyi, A. G. (1975) Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom.J. Gen. Physiol. 66, 1–30.

    PubMed  Google Scholar 

  • Lowey, S., Slayter, H. S., Weeds, A. G. &Baker, H. (1969) Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation.J. Mol. Biol. 42, 1–29.

    PubMed  Google Scholar 

  • Margossian, S. S. &Lowey, S. (1982) Preparation of myosin and its subfragments from rabbit skeletal muscle.Methods Enzymol. 85, 55–71.

    PubMed  Google Scholar 

  • Matsudaira, P. T. &Burgess, D. R. (1978) SDS microslab linear gradient polyacrylamide gel electrophoresis.Anal. Biochem. 87, 386–96.

    PubMed  Google Scholar 

  • Onishi, H. &Watanabe, S. (1984) Correlation between the papain digestibility and the conformation of 10S-myosin from chicken gizzard.J. Biochem. (Tokyo) 95, 899–902.

    Google Scholar 

  • Schacterle, G. R. &Pollack, R. L. (1973) A simplified method for the quantitative assay of small amounts of protein in biological material.Anal. Biochem. 51, 654–5.

    PubMed  Google Scholar 

  • Sellers, J. R. (1981) Phosphorylation-dependent regulation of Limulus myosin.J. Biol. Chem. 256, 9274–8.

    PubMed  Google Scholar 

  • Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, A. R. &Hartshorne, D. J. (1978) Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin.Biochemistry 17, 4411–18.

    PubMed  Google Scholar 

  • Shpetner, H. (1985) Structural and regulatory properties of scallop heavy meromyosin. PhD Thesis, Brandeis University.

  • Sobieszek, A. (1977) Vertebrate smooth muscle myosin enzymatic and structural properties. InThe Biochemistry of Smooth Muscle (edited by Stephens, N. L.) pp. 413–43. Baltimore-London-Tokyo: University Park Press.

    Google Scholar 

  • Spudich, J. A. &Watt, S. (1971) The regulation of rabbit skeletal muscle contraction.J. Biol. Chem. 246, 4866–71.

    Google Scholar 

  • Stafford, W. F., III, Szentkiralyi, E. M. &Szent-GYörgyi, A. G. (1979) Regulatory properties of single-headed fragments of scallop myosin.Biochemistry 18, 5273–80.

    PubMed  Google Scholar 

  • Suzuki, H., Stafford, W. F., III, Slayter, H. S. &Seidel, J. C. (1985) A conformational transition in gizzard heavy meromyosin involving the head-tail junction, resulting in changes in sedimentation coefficient, ATPase activity and orientation of heads.J. Biol. Chem. 260, 14 810–17.

    Google Scholar 

  • Suzuki, H., Kondo, Y., Carlos, A. D. &Seidel, J. C. (1988) Effects of phosphorylation, MgATP, and ionic strength on the rates of papain degradation of heavy and light chains of smooth muscle heavy meromyosin at the S1-S2 junction.Biol. Chem. 263, 10 974–9.

    Google Scholar 

  • Szent-Györgyi, A. G., Szentkiralyi, E. M. &Kendrick-Jones, J. (1973) The light chains of scallop myosin as regulatory subunits.J. Mol. Biol. 74, 179–203.

    PubMed  Google Scholar 

  • Szentkiralyi, E. M. (1984) Tryptic digestion of scallop S1: evidence for a complex between the two light chains and a heavy chain peptide.J. Muscle Res. Cell Motil. 5, 147–64.

    PubMed  Google Scholar 

  • Trybus, K. M. &Lowey, S. (1984) Conformational states of smooth muscle myosin.J. Biol. Chem. 259, 8564–71.

    PubMed  Google Scholar 

  • Trybus, K. M., Huiatt, T. W. &Lowey, S. (1982) A bent monomeric conformation of myosin from smooth muscle.Proc. Natl. Acad. Sci. USA 79, 6151–5.

    PubMed  Google Scholar 

  • Tyler, J. M. &Branton, D. (1980) Rotary shadowing of extended molecules dried from glycerol.J. Ultrastruct. Res. 71, 95–102.

    PubMed  Google Scholar 

  • Vibert, P. &Craig, R. (1983) Electron microscopy and image analysis of myosin filaments from scallop striated muscle.J. Mol. Biol. 165, 303–20.

    PubMed  Google Scholar 

  • Vibert, P. &Craig, R. (1985) Structural changes that occur in scallop myosin filaments upon activation.J. Cell Biol. 101, 830–7.

    PubMed  Google Scholar 

  • Vibert, P. &Cohen, C. (1988) Domains, motions and regulation in the myosin head.J. Muscle Res. Cell Motil. 9, 296–305.

    PubMed  Google Scholar 

  • Vibert, P. &Castellani, L. (1989) Substructure and accessory proteins in scallop myosin filaments.J. Cell Biol. 109, 539–47.

    PubMed  Google Scholar 

  • Walker, M. &Trinick, J. (1988) Visualization of domains in native and nucleotide-trapped myosin heads by negative staining.J. Muscle Res. Cell Motil. 9, 359–66.

    PubMed  Google Scholar 

  • Wallimann, T. &Szent-Györgyi, A. G. (1981) An immunological approach to myosin light-chain function in thick filament linked regulation. 2. Effect of anti-scallop myosin light-chain antibodies. Possible regulatory role for the essential light chain.Biochemistry 20, 1188–97.

    PubMed  Google Scholar 

  • Wallimann, T., Hardwicke, P. M. D. &Szent-Györgyi, A. G. (1982) Regulatory and essential light-chain interactions in scallop myosin. II. Photochemical cross-linking of regulatory and essential light-chains by heterobifunctional reagents.J. Mol. Biol. 156, 153–73.

    PubMed  Google Scholar 

  • Wells, C. &Bagshaw, C. R. (1984) The Ca2+ sensitivity of the actin-activated ATPase of scallop heavy meromyosin.FEBS Lett. 168, 260–4.

    Google Scholar 

  • Wells, C. &Bagshaw, C. R. (1985) Calcium regulation of molluscan myosin ATPase in the absence of actin.Nature (Lond.) 313, 696–7.

    Google Scholar 

  • Wells, C., Warriner, K. E. &Bagshaw, C. R. (1985) Fluorescence studies on the nucleotide- and Ca2+-binding domains of molluscan myosin.Biochem. J. 231, 31–8.

    PubMed  Google Scholar 

  • Winkelmann, D. A., Almeda, S., Vibert, P. J. &Cohen, C. (1984) A new myosin fragment: visualization of the regulatory domain.Nature (Lond.) 307, 758–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young Frado, LL., Craig, R. Structural changes induced in scallop heavy meromyosin molecules by Ca2+ and ATP. J Muscle Res Cell Motil 13, 436–446 (1992). https://doi.org/10.1007/BF01738038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01738038

Keywords

Navigation