Skip to main content
Log in

Organic synthesis from reducing models of the atmosphere of the primitive earth with UV light and electric discharges

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The purpose of this paper is to compare the role of UV light and of electric discharges, the two most important sources of energy on the primitive earth, in the synthesis of organic compounds out of a reducing model of that atmosphere. Since Miller's experiments in 1953, most of the experimental simulations have been performed with electric discharges, and it has been assumed that UV radiations would give similar results.

In order to check this assumption we have performed both experimental simulations in our laboratory. Experimental results indicate that this assumption was wrong in a large extent. Our four main conclusions are:

  1. 1.

    Unlike electric discharges, UV light is not an efficient source for producing unsaturated carbon chains.

  2. 2.

    UV light is efficient for producing nitriles in CH4-NH3 mixtures when the mole fraction of NH3 is very low while electric discharges need a higher mole fraction of NH3.

  3. 3.

    UV light is not able to produce nitriles from CH4-N2 mixtures while electric discharges produce important quantities of diversified nitriles from these mixtures.

  4. 4.

    UV light is not very efficient for producing aldehydes from CH4-H2O model atmosphere, electric discharges seem to be able to produce them more efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen WV, Ponnamperuma C (1967) Currents Modern Biol 1:24

    Google Scholar 

  • Bossard A (1979) Thèse de Doctorat de 3ème cycle en Chimie-Physique, Université Paris VI

  • Bossard A, Toupance G (1980) Nature 288:243

    Google Scholar 

  • Bossard A, Toupance G (1981) In: Wolman Y (ed) Origin of Life — Proceedings of the 6th ICOL Meeting, Jerusalem, June 22–27, 1980, Reidel Publ Comp, Dordrecht, The Netherlands, p 93

    Google Scholar 

  • Chang S, Scattergood T, Aronowitz S, Flores J (1978) NASA Conference Publication n° 2068, Reston, Virginia, 161 and (1979) Rev Geophys Space Phys 17 (8):1923

    Google Scholar 

  • Dodonova NYa (1966) Russ J Phys Chem 40:523

    Google Scholar 

  • Dodonova NYa, Sidorova AI (1961) Biofizika 6:149

    Google Scholar 

  • Ferris JP, Chen CT (1975a) J Amer Chem Soc 97:2962

    Google Scholar 

  • Ferris JP, Chen CT (1975b) Nature 258:587

    Google Scholar 

  • Ferris JP, Nicodem DE (1972) Nature 238:268

    Google Scholar 

  • Ferris JP, Sanchez RA, Orgel LE (1968) J Mol Evol 33:693

    Google Scholar 

  • Fox S, Dose K (1977) Molecular evolution and the origin of life, M. Dekker Inc, New York, p 87

    Google Scholar 

  • Friedmann N, Bovee HH, Miller SL (1971) J Org Chem 33 (19):2894

    Google Scholar 

  • Gardner EP, MacNesby JR (1980) J Photochem 13:353

    Google Scholar 

  • Groth WE, Von Weyssenhoff H (1960) Planet Space Sci 2:79

    Google Scholar 

  • Hellner L (1969) Thèse de Doctorat de 3ème cycle en Chimie-Physique. Faculté des Sciences de Paris (1970). J Chim Phys 67:221

    Google Scholar 

  • Joshi PC, Pathak HD (1975) J Brit Interplanet Soc 28:90

    Google Scholar 

  • Kuhn WR, Atreya SK (1979) Icarus 37:207

    Google Scholar 

  • Miller SL (1953) Science 117:528

    Google Scholar 

  • Miller SL (1957a) Ann NY Acad Sci 69:260

    Google Scholar 

  • Miller SL (1957b) Biochim Biophys Acta 23:480

    Google Scholar 

  • Miller SL, Orgel LE (1974) The origins of life on the earth, Prentice-Hall Inc, New Jersey, p 55

    Google Scholar 

  • Miller SL, Urey HC (1959) Science 130:3370

    Google Scholar 

  • Miller SL, Urey HC, Oro J (1976) J Mol Evol 9:59

    Google Scholar 

  • Mizutani H, Mikuni H, Takahasi M, Noda H (1975) Origins Life 6:513

    Google Scholar 

  • Mourey D, Raulin F, Toupance G (1981) In: Wolman Y (ed) Origin of Life — Proceedings of the 6th ICOL Meeting, Jerusalem, June 22–27, 1980, Reidel Publ Comp, Dordrecht, The Netherlands, p 73

    Google Scholar 

  • Mourey D (1981) Thèse de Doctorat de 3ème cycle en Chimie-Physique, Université Paris VI

  • Ponnamperuma C, Woeller F (1967) Current Modern Biol 1:156

    Google Scholar 

  • Reid C, Orgel LE (1967) Nature 216:455

    Google Scholar 

  • Sagan C, Khare BN (1971) Science 173:417

    Google Scholar 

  • Sanchez RA, Ferris JP, Orgel LE (1966) Science 154:784

    Google Scholar 

  • Toupance G (1973) Thèse de Doctorat d'Etat es Sciences Physiques, Université Paris VI

  • Toupance G, Raulin F, Buvet R (1975) Origin Life 6:83

    Google Scholar 

  • Toupance G, Bossard A, Raulin F (1977) Origin Life 8:259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bossard, A.R., Raulin, F., Mourey, D. et al. Organic synthesis from reducing models of the atmosphere of the primitive earth with UV light and electric discharges. J Mol Evol 18, 173–178 (1982). https://doi.org/10.1007/BF01733043

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01733043

Key words

Navigation