Skip to main content

Advertisement

Log in

Identification of a novel splice acceptor in the HIV-1 genome: independent expression of the cytoplasmic tail of the envelope protein

  • Originals Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Multiple splicing sites exist in the RNA genome of the human immunodeficiency virus type 1 (HIV-1). In a screen for subgenomic forms of the HIV-1 genome that could be transferred to fresh cells by virus infection, we identified a novel spliced variant of HIV-1 RNA that uses a hitherto unknown splice acceptor site within the envelope (Env) gene. We demonstrate that this splice acceptor is infrequently used in HIV-infected T cells. Interestingly, an AUG initiator codon is created at this splice junction which has the potential to direct the synthesis of the cytoplasmic tail of the Env gp41 protein. Transient transfection experiments with the new cDNA cloned in an expression vector demonstrated efficient utilization of this start codon and the C-terminus of the Env open reading frame. Independent expression of the 152 amino acid long, intracellular Env domain provides novel regulatory mechanisms for modulating viral infectivity and perhaps pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cullen BR (1992) Mechanism of action of regulatory proteins encoded by complex retroviruses. Microbiol Rev 56: 75–394

    Google Scholar 

  2. Garcia JA, Gaynor RB (1994) Regulatory mechanisms involved in the control of HIV-1 gene expression. AIDS 8: S3-S17

    Google Scholar 

  3. Arrigo SJ, Weitsman S, Zack JA, Chen ISY (1990) Characterization and expression of novel singly spliced RNA species of human immunodeficiency virus type 1. J Virol 64: 4585–4588

    Google Scholar 

  4. Guatelli JC, Gingeras TR, Richman DD (1990) Alternative splice acceptor utilization during human immunodeficiency virus type 1 infection of cultured cells. J Virol 64: 40933–4098

    Google Scholar 

  5. Robert-Guroff M, Popovic M, Gartner S, Markham P, Gallo RC, Reitz MS (1990) Structure and expression of tat-, rev-, and nef-specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J Virol 64: 3391–3398

    Google Scholar 

  6. Schwartz S, Felber BK, Benko DM, Fenyo EM, Pavlakis GN (1990) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64: 2519–2529

    Google Scholar 

  7. Schwartz S, Felber BK, Fenyo EM, Pavlakis GN (1990) Env and VpU proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol 64: 5448–5456

    Google Scholar 

  8. Purcell DFJ, Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67: 6365–6378

    Google Scholar 

  9. Benko DM, Schwartz S, Pavlakis GN, Felber BK (1990) A novel human immunodeficiency virus type 1 protein, tev, shares sequences with tat, env, and rev proteins. J Virol 64: 2505–2518

    Google Scholar 

  10. Furtado MR, Balachandran R, Gupta P, Wolinsky SM (1991) Analysis of alternatively spliced human immunodeficiency virus type-1 mRNA species, one of which encodes a novel Tat-Env fusion protein. Virology 185: 258–270

    Google Scholar 

  11. Göttlinger HG, Dorfman T, Cohen EA, Haseltine WA (1992) The role of tnv protein and tnv RNA splicing signals in replication of HIV-1 IIIB isolates. Virology 189: 618–628

    Google Scholar 

  12. Salfeld J, Göttlinger H, Sia R, Park R, Sodroski J, Haseltine W (1990) A tripartite HIV-1 tat-env-rev fusion protein. EMBO J 9: 965–970

    Google Scholar 

  13. Schwartz S, Felber BK, Benko DM, Fenyo EM, Pavlakis GN (1990) Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64: 2519–2529

    Google Scholar 

  14. Das AT, Klaver B, Berkhout B (1995) Reduced replication of human immunodeficiency virus type 1 mutants that use reverse transcription primers other than the natural tRNAlys,3. J Virol 69: 3090–3097

    Google Scholar 

  15. Peden K, Emerman M, Montagnier L (1991) Changes in growth properties on passage in tissue culture of viruses derived from infectious molecular clones of HIV-1 LAI, HIV-1 MAL and HIV-1 ELI. Virology 185: 661–672

    Google Scholar 

  16. Chirgwin JM, Przybyla AE, McDonald RJ, Rutter WJ (1979) Isolation and biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299

    Google Scholar 

  17. Berkhout B, Silverman R, Jeang K-T (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282

    Google Scholar 

  18. de Ronde A, Klaver B, Keulen W, Smit L, Goudsmit J (1992) Natural nef accelerates virus replication in primary human lymphocytes. Virology 188: 391–395

    Google Scholar 

  19. Coffin JM (1986) Genetic variation in AIDS viruses. Cell 46: 1–4

    Google Scholar 

  20. Barrett ADT, Dimmock NJ (1986) Defective interfering viruses and infections of animals. Curr Top Microbiol Immunol 128: 55–84

    Google Scholar 

  21. Voynow SL, Coffin JM (1985) Evolutionary variants of Rous sarcoma virus: large deletion mutants do not result from homologous recombination. J Virol 55: 67–78

    Google Scholar 

  22. Muesing MA, Smith DH, Cabradilla CD, Benton CV, Lasky LA, Capon DJ (1985) Nucleic acid structure and expression of the human AIDS/lymphadenopathy virus. Nature 313: 450–458

    Google Scholar 

  23. Kozak M (1989) The scanning model for translation: an update. J Cell Biol 108: 229–241

    Google Scholar 

  24. Schwartz S, Felber BK, Pavlakis GN (1992) Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 12: 207–219

    Google Scholar 

  25. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292

    Google Scholar 

  26. Aldovini A, Young RA (1990) Mutations of RNA and protein sequences involved in human immunodeficiency virus type 1 packaging result in production of noninfectious virus. J Virol 64: 1920–1926

    Google Scholar 

  27. Clavel F, Orenstein JM (1990) A mutant of human immunodeficiency virus with reduced RNA packaging and abnormal particle morphology. J Virol 64: 5230–5234

    Google Scholar 

  28. Aronoff R, Linial M (1991) Specificity of retroviral RNA packaging. J Virol 65: 71–80

    Google Scholar 

  29. Richardson JH, Child LA, Lever AML (1993) Packaging of human immunodeficiency virus type 1 RNA requires cis-acting sequences outside the 5′ leader region. J Virol 67: 3997–4005

    Google Scholar 

  30. Richardson JH, Kaye JF, Child LA, Lever AML (1995) Helper virus-free transfer of human immunodeficiency virus type 1 vectors. J Gen Virol 76: 691–696

    Google Scholar 

  31. Saïb A, Périès J, de Thé H (1993) A defective human foamy provirus generated by pregenome splicing. EMBO J 12: 4439–4444

    Google Scholar 

  32. Myers G, Wain-Hobson S, Henderson LE, Korber B, Jeang K-T, Pavlakis GN (eds) (1995): Human retroviruses and AIDS. A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos National Laboratory, Los Alamos

    Google Scholar 

  33. Rice NR, Henderson LE, Sowder RC, Copeland TD, Oroszlan S, Edwards JF (1990) Synthesis and processing of the transmembrane envelope protein of equine infectious anemia virus. J Virol 64: 3770–3778

    Google Scholar 

  34. Hunter E, Hill E, Hardwick JM, Bhown A, Schwartz DE, Tizard R (1983) Complete sequence of the Rous sarcoma virus Env gene: identification of structural and functional regions of its product. J Virol 46: 920–936

    Google Scholar 

  35. Chou PY, Fasman GD (1978) Predictions of the secondary structure of proteins from their amino acid sequence. Annu Rev Biochem 47: 251–276

    Google Scholar 

  36. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120: 97–120

    Google Scholar 

  37. Clavel F, Guetard D, Brun-Vezinet F, Chamaret S, Rey M-A, Santos-Ferreira MO, Laurent AG, Dauguet C, Katlama C, Rouzioux C, Klatzmann D, Champalimaud JL, Montagnier L (1986) Isolation of a new human retrovirus from West African patients with AIDS. Science 233: 343–346

    Google Scholar 

  38. Chakrabarti L, Emerman M, Tiollais P, Sonigo P (1989) The cytoplasmic domain of simian immunodeficiency virus transmembrane protein modulates infectivity. J Virol 63: 4395

    Google Scholar 

  39. Hirsch VM, Edmondson P, Murphey-Corb M, Arbeille B, Johnson PR, Mullins JI (1989) SIV adaptation to human cells. Nature 341: 573–574

    Google Scholar 

  40. Kodama T, Wolley DP, Naidu YM, Kestler HW, Daniel MD, Li Y, Desrosiers RC (1989) Significance of premature stop codons in env of simian immunodeficiency virus. J Virol 63: 4709–4714

    Google Scholar 

  41. Zagury JF, Franchini G, Reitz M, Collalti E, Starcich B, Hall L, Fargnoli L, Jagozinski L, Guo H-G, Laure F, Arya SK, Josephs S, Zagury D, Wong-Staal F, Gallo RC (1988). Genetic variability between isolates of human immunodeficiency virus (HIV) type 2 is comparable to the variability among HIV type 1. Proc Natl Acad Sci USA 85: 5941–5945

    Google Scholar 

  42. Shimizu H, Hasebe F, Tsuchie H, Mirikawa S, Ushijima H, Kitamura T (1992) Analysis of a human immunodeficiency virus type 1 isolate carrying a truncated transmembrane glycoprotein. Virology 189: 534–546

    Google Scholar 

  43. Zaides V, Yagello M, Veselovskaya T, Schmitt D, Rykova L, Fenouillett E, Gluckman JC (1994) Extensive C-terminal deletion in human immunodeficiency virus type 1 Env glycoprotein arising after long-term culture of chronically infected cells. J Gen Virol 75: 2963–2975

    Google Scholar 

  44. Venable RM, Pastor RW, Brooks BR, Carson FW (1989) Theoretically determined three-dimensional structures for amphipathic segments of HIV-1 gp41 envelope protein. AIDS Res Hum Retroviruses 5: 7–22

    Google Scholar 

  45. Eisenberg D, Wesson M (1990) The most amphiphilic alpha-helices include two amino acid segments in human immunodeficiency virus glycoprotein 41. Biopolymers 29: 171–177

    Google Scholar 

  46. Miller MA, Garry RT, Jaynes JM, Montelaro RC (1991) A structural correlation between lentiviral transmembrane proteins and natural cytolytic peptides. AIDS Res Hum Retroviruses 7: 511–519

    Google Scholar 

  47. Srinivas SK, Srinivas RV, Anantharamaiah GM, Segrest JP, Compans RW (1992) Membrane interactions of synthetic peptides corresponding to amphipathic helical segments of the human immunodeficiency virus type-1 envelope glycoprotein. J Biol Chem 267: 7121–7127

    Google Scholar 

  48. Gawrisch K, Han K-H, Yang J-S, Bergelson J-D, Ferretti JA (1993) Interaction of peptide fragment 828–848 of the envelope glycoprotein of human immunodeficiency virus type 1 with lipid bilayers. Biochemistry 32: 3112–3118

    Google Scholar 

  49. Chernomordik L, Chanturiya AN, Suss-Toby E, Nora E, Zimmerberg J (1994) An amphipathic peptide from the C-terminal region of the human immunodeficiency virus envelope glycoprotein causes pore formation in membranes. J Virol 68: 7115–7123

    Google Scholar 

  50. Miller MA, Cloyd MW, Liebmmann J, Rinaldo CR, Islam KR, Wang SZS, Mietzner TA, Montelaro RC (1993) Alterations in cell membrane permeability by the lentiviral lytic peptide (LLP-1) of HIV-1 transmembrane protein. Virology 196: 89–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkhout, B., van Wamel, J.L.B. Identification of a novel splice acceptor in the HIV-1 genome: independent expression of the cytoplasmic tail of the envelope protein. Archives of Virology 141, 839–855 (1996). https://doi.org/10.1007/BF01718159

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01718159

Keywords

Navigation