Skip to main content
Log in

Photocatalytic synthesis of organic compounds from CO and water: Involvement of surfaces in the formation and stabilization of products

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

14C-Formic acid and other14C-organic compounds are formed on surface materials when mixtures of14CO,12CO2 or N2 and water vapor are irradiated with ultraviolet light (UV) ofλ > 250 nm. The rate of organic formation is roughly proportional to the quantity of substratum irradiated. The available evidence suggests that14CO adsorbed to or in contact with the substratum is excited by the long wavelength UV and reacts with adsorbed H2O or surface hydroxyl groups yielding the organic products. Photodestruction of the14C-organics yields14CO2 and14CO. A steady state is attained when organic products reach a concentration such that the rate of photodestruction is equal to the rate of synthesis. The product accumulation is greater and the photodestruction is slower when N2 is used as diluent gas.

Differences in the rates of synthesis, rates of photodestruction and amounts of product accumulation are observed with different silica and alumina substrata. The substrata with large surface areas are most effective for synthesis while maximum photoprotection of organics is afforded by substrata containing high concentrations of surface hydroxyl groups.

The observation of the synthesis on a variety of substrata using realistic simulations of atmospheres and solar energies strengthens previous proposals that this process may occur on Mars and may have been important on the primitive Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, P. H.: Proc. nat. Acad. Sci. (Wash.)55, 1365 (1966).

    Google Scholar 

  • Adams, J. B.: Science159, 1453 (1968).

    Google Scholar 

  • Barker, E. S.: Nature (Lond.)238, 447 (1972).

    Google Scholar 

  • Boehm, H. P.: Adv. Catal.16, 179 (1966).

    Google Scholar 

  • Brinkmann, R. T.: J. Geophys. Res.74, 5355 (1969).

    Google Scholar 

  • Calvert, J. G., Pitts, J. N.: Photochemistry. p. 430. NewYork: John Wiley and Sons (1966).

    Google Scholar 

  • Carlton, N. P., Traub, W. A.: Science177, 988 (1972).

    Google Scholar 

  • Fanale, F. P., Cannon, W. A.: Nature (Lond.)230, 502 (1971a).

    Google Scholar 

  • Fanale, F. P., Cannon, W. A.: Earth Planet. Sci. Lett.11, 362 (1971b).

    Google Scholar 

  • Ford, R. R.: Adv. Catal.21, 51 (1970).

    Google Scholar 

  • Hanel, R. A., Conrath, B. J., Hovis, W. A., Kunde, V. G., Lowman, P. D., Pearl, J. C., Prabhakara, C., Schlachman, B., Levin, G. V.: Science175, 305 (1972).

    Google Scholar 

  • Hubbard, J. S., Hardy, J. P., Horowitz, N. H.: Proc. nat. Acad. Sci. (Wash.)68, 574 (1971).

    Google Scholar 

  • Hulett, H. R.: J. theor. Biol.24, 56 (1969).

    Google Scholar 

  • Hunt, Logan & Salisbury, Icarus, in press (1973).

  • Kenyon, D. H., Steinman, G.: Biochemical predestination. NewYork: McGraw-Hill 1969.

    Google Scholar 

  • Kohn, H. W., Taylor, E. H.: Actes due duexienne congres international de catalyse, p. 1461. Paris: Editions Techniq: 1961.

    Google Scholar 

  • Liuti, G., Dondes, S., Harteck, P.: J. Chem. Phys.44, 4051 (1966).

    Google Scholar 

  • Mars, P., Scholten, J. J. F., Zwitering, P.: Adv. Catal.14, 35 (1963).

    Google Scholar 

  • Masursky, H., Batson, R. M., McCauley, F., Soderblom, L. A., Wildey, R. L., Carr, M. H., Milton, D. J., Wildelms, D. E., Smith, B. A., Kirby, T. B., Robinson, J. C., Leovy, C. B., Briggs, G. A., Duxbury, T. C., Acton, C. H., Murray, B. C., Cutts, J. A., Sharp, R. P., Smith, S., Leighton, R. B., Sagan, C., Veverka, J., Noland, M., Lederberg, J., Levinthal, E., Pollack, J. B., Moore, J. T., Hartmann, W. K., Shipley, E. N., DeVaucouleurs, G., Davies, M. E.: Science175, 294 (1972).

    Google Scholar 

  • Moesta, H.: Umschau70, 45 (1970).

    Google Scholar 

  • Nicholls, C. H., Leermakers, P. A.: Adv. Photochem.8, 315 (1971).

    Google Scholar 

  • Posner, A. M., Quirk, J. P.: Proc. Roy. Soc.278, 35 (1964).

    Google Scholar 

  • Simonaitis, R., Heicklen, J.: Inter. J. Chem. KineticsIII, 319 (1971).

    Google Scholar 

  • Thompson, B. A., Harteck, P., Reeves, R. R.: J. Geophys. Res.68, 6431 (1963).

    Google Scholar 

  • Venugopalan, M., Jones, R. A.: Chemistry of dissociated water vapor and related systems, p. 71. NewYork: Interscience 1968.

    Google Scholar 

  • Vogel, A. I.: Practical organic chemistry, p. 332. NewYork: John Wiley & Sons 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubbard, J.S., Hardy, J.P., Voecks, G.E. et al. Photocatalytic synthesis of organic compounds from CO and water: Involvement of surfaces in the formation and stabilization of products. J Mol Evol 2, 149–166 (1973). https://doi.org/10.1007/BF01653995

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01653995

Key words

Navigation