Skip to main content
Log in

Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuum systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Our most complete results concern the Ising spin system with purely ferromagnetic interactions in a magnetic fieldH (or the corresponding lattice gas model with fugacityz=const. exp(−2mHβ) wherem is the magnetic moment of each spin). We show that, in the limit of an infinite lattice, (i) the free energy per site and the distribution functionsn s (x 1, ...,x s ; β,z) are analytic in the two variables β andH if the reciprocal temperature β>0 and the complex numberH is not a limit point of zeros of the grand partition function ξ, and (ii) the Ursell functionsu s (x 1, ...,x s ; β,z) tend to 0 as Δ s ≡Max i, j |x i x j | → ∞ if β>0 and ReH≠0; in particular, if the interaction potential vanishes for separations exceeding some fixed cutoff value λ, then |u s |<C exp [(−2 βm |ReH|+ε) Δ s /λ] where ε is any small positive number andC is independent of Δ s . One consequence of the result (i) is that a phase transition can occur as β is varied at constantH only ifH is a limit point of zeros of ξ (which can happen only if ReH=0); this supplements Lee and Yang's result that the same condition is necessary for a phase transition whenH is varied at constant β.

For a lattice or continuum gas with non-negative interaction potential (corresponding, in the lattice case, to an Ising antiferromagnet), similar results are shown to hold provided β>0 and the complex fugacityz is less than the radius of convergence of the Mayerz expansion; for the continuum gas, however,n s andu s must be replaced by their values integrated over small volumes surrounding each of the pointsx 2, ...,x s .

It is shown that the pressurep is analytic in both β andz, if it is analytic inz at fixed β over a suitable range of values of β andz, and further that, except for continuum systems without hard cores,p,n s andu s have convergent Maclaurin expansions in β for small enoughz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Groeneveld, J.: Phys. Letters3, 50 (1962).

    Google Scholar 

  2. Ruelle, D.: Ann. Phys.25, 109 (1963).

    Google Scholar 

  3. Penrose, O.: J. Math. Phys.4, 1312 (1963).

    Google Scholar 

  4. Ruelle, D.: Rev. Mod. Phys.36, 580 (1964).

    Google Scholar 

  5. Uhlenbeck, G. E., andG. W. Ford: In: Studies in statistical mechanics, Vol. 1 (ed.de Boer andUhlenbeck) pp. 143 and 137, equations (46) and (29). Amsterdam: North Holland Publishing Co. 1962.

    Google Scholar 

  6. Ahlfors, L. A.: Complex analysis, p. 24, New York: McGraw-Hill 1966.

    Google Scholar 

  7. Dobrushin, R. L.: Teor. Veroyatnostei i ee primeneniya9, 626 (1964); Theory Probability. Appl. USSR9, 566 (1964).

    Google Scholar 

  8. Jones, G. L.: J. Math. Phys.7, 2000 (1966).

    Google Scholar 

  9. Smith, E. B., andB. J. Alder: J. Chem. Phys.30, 1190 (1959).

    Google Scholar 

  10. Lee, T. D., andC. N. Yang: Phys. Rev.87, 410 (1952).

    Google Scholar 

  11. Ahlfors, L. A.: Complex analysis, p. 222. New York: McGraw-Hill 1966.

    Google Scholar 

  12. Gallavotti, G., S. Miracle-Sole, andD. W. Robinson: Phys. Letters25A, 493 (1967);R. L. Dobrushin et al., to be published.

    Google Scholar 

  13. Yang, C. N., andT. D. Lee: Phys. Rev.87, 404 (1952).

    Google Scholar 

  14. Titchmarsh, E. C.: Theory of functions, p. 168. Oxford: University Press 1939.

    Google Scholar 

  15. Baker, G. A., Jr.: Phys. Rev.161, 434 (1967).

    Google Scholar 

  16. Ahlfors, L.: Complex analysis, p. 176. New York: McGraw-Hill 1966.

    Google Scholar 

  17. Groeneveld, J.: Eq. (53) on p. 244 of Graph theory and theoretical physics (Proceedings of the NATO Summer School, Frascati, Italy, 1964; editorF. Harary). New York: Academic Press 1968.

    Google Scholar 

  18. Uhlenbeck, G. E., andG. W. Ford: Studies in statistical mechanics, Vol. 1, p. 143, equations (47) and (49). Amsterdam: North-Holland Publishing Co. 1962.

    Google Scholar 

  19. Griffiths, R. B.: J. Math. Phys.8, 484 (1967).

    Google Scholar 

  20. Kelly, D. G., andS. Sherman: J. Math. Phys.9, 466 (1968).

    Google Scholar 

  21. Elvey, J. S. N., andO. Penrose: Phys. Letters26 A, 456 (1968).

    Google Scholar 

  22. Fisher, M. E.: J. Math. Phys.6, 1643 (1965).

    Google Scholar 

  23. Lebowitz, J. L., andJ. K. Percus: J. Math. Phys.4, 116 (1963).

    Google Scholar 

  24. Gallavotti, G., andS. Miracle-Sole: Commun. Math. Phys.7, 274 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the U.S. Air Force Office of Scientific Research under grant no. AF 68-1416.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebowitz, J.L., Penrose, O. Analytic and clustering properties of thermodynamic functions and distribution functions for classical lattice and continuum systems. Commun.Math. Phys. 11, 99–124 (1968). https://doi.org/10.1007/BF01645899

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01645899

Keywords

Navigation