Skip to main content
Log in

Basic principles in preclinical cancer chemotherapy

  • Guest Editorial
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Summary

Anticancer agents so far available and their mechanisms of action suffer from the problem of their relatively low selectivity. Their insufficient clinical efficacy against the common, slowly growing solid tumors of the lung, gastrointestinal system, kidneys, urinary bladder, and brain remains disappointing. Recently the possibility has been discussed that the limited clinical activity of current anticancer drugs could result from the screening models and methods used in their selection. The initial approach to drug discovery used by the National Cancer Institute, Bethesda, USA (NCI), the greatest oncological research unit in the world, has been empirical large-scale screening in transplantable rodent tumor models. In the past, these preclinical models have been changed periodically in line with retrospecitve analyses of preclinical predictivity for clinical efficacy. Recently, as a new strategy, a “disease-orientated” concept has been developed to screen agents against particular types of human cancer on the basis of the human tumor colony-forming assay in vitro. Each compound should now be tested directly against a spectrum of human tumor lines without passing through a rodent prescreen. Additional assays in vivo may be performed later on. This new screening concept seems to be suitable for identifying the cytotoxicity of new chemical structures and for an evaluation of sensitivity or resistance of the different tumor types. The contrasting concept of “rational drug design” is exemplified by the development of the oxazaphosphorinecytostatics. The basis of this concept was the application of the transport form/active form principle to the antiproliferative nitrogen mustard. Cyclophosphamide, the first representative of this group, had already largely reached the given objective. Generalizing conclusions from the different concepts are as follows.

  1. 1.

    Methods and perceptions of general pharmacotherapy must be the principal basis for the development of antitumor compounds.

  2. 2.

    Progress and essential new developments in cancer chemotherapy are based on experiments in intact animals.

  3. 3.

    An important feature of rational drug design is the stepwise or sequential procedure: the design of new drugs is based on the screening results of former drugs to achieve an optimal progress.

  4. 4.

    For the analysis of the activity of alkylating agents on rats and mice, the panel of test tumors for screening and pharmacological evaluation must be selected according to a different degree of chemoresistance or chemosensitivity, respectively. It should be aimed at a complete dose/activity curve with cyclophosphamide as standard at least for the most sensitive tumors of that panel.

  5. 5.

    The therapeutic index, i.e. LD5/CD95, has proved to be a valuable tool for chemotherapeutic usefulness, as has the danger coefficient for the quantification of organotoxic side-effects. These values provide a measure of the therapeutic range and, consequently, of the selectivity of the antitumor activity. Results from a given tumor have proved to be predictive for other tumors and turned out to be relevant also for clinical trials.

  6. 6.

    The different sensitivities of experimental tumors against alkylating agents is not a fundamental property but a quantitative feature. With sub- or even supra-lethal doses it is possible to overcome vitality and transplantability of even the very most resistant tumors. A new product with impressively increased selectivity is consequently expected to achieve remissions in more resistant tumors also. This evaluation system also remains applicable and useful in the context of a “disease-oriented” concept.

  7. 7.

    A profound knowledge of the mechanism of action of cytostatic agents and a deep insight into the metabolic patterns in the host and in tumor cells are the essential basis for a rational augmentation of cytostatic activity.

  8. 8.

    Promising leads, identified initially by empirical large-scale screening programs, mostly need forther optimization through the rational approach. Thus there is most often an essential and intimate interplay between the rational and large-scale screening strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alarcon RA (1976) Studies on the in vivo formation of acrolein: 3-hydroxypropylmercapturic acid as an index of cyclophosphamide (NSC-26271) activation. Cancer Treat Rep 60:327–335

    Google Scholar 

  • Arnold H, Bourseaux F, Brock N (1958) Neuartige Krebs-Chemotherapeutika aus der Gruppe der zyklischen N-Lost-Phosphamidester. Naturwissenschaften 45:64–66

    Google Scholar 

  • Boyd MR, Shoemaker RH, McLemore TL, Johnston MR, Alley MC, Scudiero DA, Monks A, Fine DL, Mayo JG, Chabner BA (1989) New drug development. In: Roth JA, Ruckdeschel JC, Weisenburger TH (eds) Thoracic oncology. Saunders, Philadelphia, pp 711–721

    Google Scholar 

  • Brade WP, Herdrich K, Varini M (1985) Ifosfamide. Pharmacology, safety and therapeutic potential. Cancer Treat Rev 12:1–47

    Google Scholar 

  • Brock N (1958) Zur pharmakologischen Charakterisierung zyklischer N-Lost-Phosphamidester als Krebs-Chemotherapeutica. Arzneimittelforschung (Drug Res) 8:1–9

    Google Scholar 

  • Brock N (1959) Neue experimentelle Ergebnisse mit N-Lost-Phosphamidestern. Strahlentherapie 41:347–354

    Google Scholar 

  • Brock N (1976) Experimental basis of cancer chemotherapy. In: Hellmann K, Connors TA (eds) Chemotherapy vol 7. Plenum, New York, pp 19–50

    Google Scholar 

  • Brock N (1977) Transportform/Wirkform — ein Konzept und seine Realisierung in der Krebs-Chemotherapie. Chem Exp Technol 3:441–448

    Google Scholar 

  • Brock N (1978) Pharmakologische Grundlagen der Krebs-Chemotherapie. In: Georgii A (Hrsg) Verhandlungen der Deutschen Krebsgesellschaft, Bd 1, Fischer, Stuttgart, S 15–42

    Google Scholar 

  • Brock N (1983) Oxazaphosphorine cytostatics: structure-activity relationships, selectivity and metabolism, regional detoxification. In: Reinhoudt DN, Connors TA, Pinedo HM, Van de Poll KW (eds) Structure-activity relationships of anti-tumour agents. Martinus Nijhoff, The Hague, pp 239–267

    Google Scholar 

  • Brock N (1986) Ideas and reality in the development of cancer chemotherapeutic agents, with particular reference to oxazaphosphorine cytostatics. J Cancer Res Clin Oncol 111:1–12

    Google Scholar 

  • Brock N, Geks FJ (1951) Die Bestimmung der therapeutischen Breite von Arzneimitteln. Naturwissenschaften 38:351

    Google Scholar 

  • Brock N, Hohorst HJ (1977) The problem of specificity and selectivity of alkylating cytostatics: studies onN-2-chloroethylamido-oxazaphosphorines. Z Krebsforsch 88:185–215

    Google Scholar 

  • Brock N, Schneider B (1961) Pharmakologische Charakterisierung von Arzneimitteln mit Hilfe des Therapeutischen Index. Arzneimittelforschung (Drug Res) 11:1–7

    Google Scholar 

  • Brock N, Schneider B (1964) Ein Screening-System für krebswirksame Substanzen auf der Grundlage des Therapeutischen Index. Arzneimittelforschung (Drug Res) 14:171–176

    Google Scholar 

  • Brock N, Schneider B (1965) A screening system for anticancer agents based on the therapeutic index. Biometrics 21:150–158

    Google Scholar 

  • Brock N, Schneider B (1966) Quantitative Methoden bei der pharmakotherapeutischen Bewertung von Arzneimitteln — Auswertung, Planung, Screening. Biometrische Z 8:147–161

    Google Scholar 

  • Brock N, Schneider B (1980) Models and methods for the assessment of cumulation of drug effects. Arzneimittelforschung (Drug Res) 30:1034–1040

    Google Scholar 

  • Brock N, Schneider B (1984) Models in cytostatic chemotherapy. Cancer 54:1229–1238

    Google Scholar 

  • Brock N, Hilgard P, Peukert M, Pohl J, Sindermann H (1988) Basis and new developments in the field of oxazaphosphorines. Cancer Invest 6:513–532

    Google Scholar 

  • Colvin M (1982) The comparative pharmacology of cyclophosphamide and ifosfamide. Semin Oncol 9:2–7

    Google Scholar 

  • Connors TA (1974) Screening system for antitumor agents. Revista Latinoam VII:22–32

    Google Scholar 

  • Connors TA, Whisson ME (1966) Cure of mice bearing advanced plasma cell tumours with aniline mustard: relationship between glucuronidase activity and tumour sensitivity. Nature 210:866

    Google Scholar 

  • Connors TA, Cox PJ, Farmer PB, Foster AB, Jarman M (1974) Some studies of the active intermediates formed in the microsomal metabolism of cyclophosphamide and isophosphamide. Biochem Pharmacol 23:115–129

    Google Scholar 

  • Creaven PJ, Allen LM, Cohen MH, Nelson RL (1976) Studies on the clinical pharmacology and toxicology of isophosphamide (NSC-109724). Cancer Treat Rep 60:445

    Google Scholar 

  • Double IA, Bibby MC (1989) Therapeutic index: a vital component in selection of anticancer agents for clinical trial. J Natl Cancer Inst 81:988–994

    Google Scholar 

  • Druckrey H (1961) Chemotherapie des Krebses. Med Klinik 56:1421–1430

    Google Scholar 

  • Druckrey H, Raabe S (1952) Organspezifische Chemotherapie des Krebs (Prostatacarcinom). Klin Wochenschr 30:882–884

    Google Scholar 

  • Druckrey H, Kuk BT, Schmähl D, Steinhoff E (1958) Kombination von Operation und Chemotherapie beim Krebs. Münch Med Wochenschr 100:1913–1918

    Google Scholar 

  • Druckrey H, Steinhoff D, Nakayama M, Preussmann R, Anger K (1963) Experimentelle Beiträge zum Dosisproblem in der Krebs-Chemotherapie und zur Wirkungsweise von Endoxan. Dtsch Med Wochenschr 88:651–663

    Google Scholar 

  • Druckrey H, Preussmann R, Ivankovic S, Schmähl D (1967) Organotrope karzinogene Wirkungen bei 65 verschiedenenN-Nitroso-Verbindungen an BD-Ratten. Z Krebsforsch 69:103–201

    Google Scholar 

  • Fiebig HH, Schmähl D (1978) Das experimentelle Mammakarzinom als Modell für chemotherapeutische Studien. In: Behandlung und Nachbehandlung des Mammakarzinoms: 3. Oberaudorfer Gespräch, Herausgeber D. Schmähl. Thieme, Stuttgart

    Google Scholar 

  • Fiebig HH, Schmid JR, Bieser W, Henss H, Löhr GW (1987) Colony assay with human tumor xenografts, murine tumors and human bone marrow. Potential for anticancer drug development. Eur J Cancer Clin Oncol 23:937–948

    Google Scholar 

  • Foster AB, Farmer PB, Connors TA, Cox PJ, Jarman M (1976) Symposion on the metabolism and mechanism of action of cyclophosphamide, Chester Beatty Research Institute, London, England, 1975. Cancer Treat Rep 60:299–525

    Google Scholar 

  • Geran RI, Greenberg NH, Macdonald MM, Schumacher AM, Abbott BJ (1972) Protocols for screening chemical agents and natural products against animal tumors and other biological systems. National Institutes of Health, Bethesda, Maryland

    Google Scholar 

  • Goldin A, Serpick AA, Mantel N (1966) Experimental screening procedures and clinical predictability value. Cancer Chemother Rep 50:173–218

    Google Scholar 

  • Goldin A, Venditti JM, Mantel N (1974) Combination chemotherapy: basic considerations. In: Heffter-Heubner (ed) Handbuch der experimentellen Pharmakologie, Bd 38. Springer, Berlin Heidelberg New York, S 411

    Google Scholar 

  • Goldin A, Schepartz SA, Venditti JM, DeVita VTJr (1979) Methods Cancer Res 16:165–245

    Google Scholar 

  • Habs M, Schmähl D (1979) Chemotherapy studies in autochthonous rat tumors: carcinomas of the forestomach. J Cancer Res Clin Oncol 95:39–42

    Google Scholar 

  • Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463

    Google Scholar 

  • Hartwich G, Fuchs HF, Neidhardt B (1972) Zytostatische Behandlung teilsynchronisierter Tumoren. Fortschr Med 90:46–49

    Google Scholar 

  • Hilgard P, Pohl J, Stekar J, Voegeli R (1985) Oxazaphosphorines as biological response modifiers — experimental and clinical perspectives. Cancer Treat Rev 12:155–162

    Google Scholar 

  • Hill DL (1975) A review of cyclophosphamide. Thomas, Springfield, Ill.

    Google Scholar 

  • Klein HO, Gerecke D, Borberg H, Gross H, Hoefer-Janker H, Scheef W, Diehl V, Lohmann E, Adler D, Buter E, Löhning A, Brock N, Burkert H (1975) Ergebnisse der Synchronisationstherapie mit Vincristin und Cyclophosphamid bei Lymphogranulomatose, Retikulumzell- und Lymphsarkom. Dtsch Med Wochenschr 100:1719–1726

    Google Scholar 

  • Klein HO, Brock N, Lennartz KJ, Feaux de Lacroix W, Adler D, Gross R (1976) Weitere tierexperimentelle Untersuchungen zur pharmakologischen Induktion einer Teilsynchronisation der Tumorzellproliferation. Ihre Bedeutung für die zytostatische Behandlung. In: Hartwich G (Hrsg), Synchronisationsbehandlung maligner Tumoren. Straube, Erlangen, S 9–36

    Google Scholar 

  • Klein HO, Wickramanayake PD, Christian E et al. (1983) Therapeutic effects of single-push or fractionated injections of cyclophosphamide or ifosfamide combined with mesna. Cancer Treat Rev 10 [Suppl A]:83–92

    Google Scholar 

  • Körner F, Lund S, Jonas U (1975) Zytostatische Tumortherapie unter Teilsynchronisationsbedingungen mit besonderer Berücksichtigung der malignen Hodentumoren. Münch Med Wochenschr 117:1345

    Google Scholar 

  • Martini H, Scheef W, Knecht B (1967) Verträglichkeit und Wirkung sehr hoch dosierter Endoxanstöße in der Tumortherapie. Med Welt 18:1573–1578

    Google Scholar 

  • Muggia FM (1987) Closing the loop: providing feedback on drug development. Cancer Treat Rep 71:1–2

    Google Scholar 

  • Norpoth K (1976) Studies on the metabolism of isophosphamide (NSC-109724) in man. Cancer Treat Rep 60:437–443

    Google Scholar 

  • Pohl J, Reissmann T, Voegeli R (1987) Oxazaphosphorine effects in L5222 rat leukemia. Methods Find Exp Clin Pharmacol 9:589–594

    Google Scholar 

  • Potel J, Brock N (1972) Zur Pharmakologie der chemischen Immunsuppression (Verh Dtsch Ges Rheumatologie Bd 2). Z Rheumaforsch 31 [Suppl 2]:339–357

    Google Scholar 

  • Salmon SE, Hamburger AW, Soehnlen B et al. (1978) Quantitation of differential sensitivity of human tumor stem cells to anticancer drugs. N Engl J Med 298:1321–1327

    Google Scholar 

  • Schabel FMJr (1974) New experimental drug combinations with potential clinical utility. Biochem Pharmacol 23 [Suppl 2]:163–176

    Google Scholar 

  • Schmähl D (1976) Utilization of nitrosamine-induced tumors as models for cancer chemotherapy. In: Hellmann K, Connors TA (eds) Chemotherapy, vol 7. Cancer chemotherapy I. Plenum, New York, pp 233–238

    Google Scholar 

  • Schmähl D (1990) Perspectives in cancer chemotherapy. 2nd International Beijing Cancer Symposium, Beijing, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schmitz G, Gross R (1967) Erste klinische Erfahrungen mit ultrahohen Einzeldosen von Cyclophosphamid. Med Welt 18:985–989

    Google Scholar 

  • Schnitker J, Brock N, Burkert H, et al. (1976) Evaluation of a cooperative clinical study of the cytostatic agent ifosfamide. Arzneimittelforschung (Drug Res.) 26:1783–1793

    Google Scholar 

  • Shoemaker RH, Monks A, Alley MC, Scudiero DA, Fine DL, McLemore TL, Abbott BJ, Paull KD, Mayo JG, Boyd MR (1988) Development of human tumor cell line panels for use in disease-oriented drug screening. In: Prediction of response to cancer therapy. Liss, New York, pp 265–286

    Google Scholar 

  • Sladek NE (1973) Bioassay and relative cytotoxic potency of cyclophosphamide metabolites generated in vitro and in vivo. Cancer Res 33:1150–1158

    Google Scholar 

  • Struck RF, Kirk MC, Mellet LB (1971) Urinary metabolites of the antitumor agent cyclophosphamide. Mol Pharmacol 7:519–529

    Google Scholar 

  • Stuart-Harris R, Harper PG, Kaye SB, et al. (1983) High-dose ifosfamide by infusion with mesna in advanced soft tissue sarcoma. Cancer Treat Rev 10 [Suppl A]: 163–164

    Google Scholar 

  • Takamizawa A, Iwata T, Yamaguchi K, Shiratori O, Harada M, Tochino Y, Matsumoto S (1976) Stereochemistry, metabolism, and antitumor activity of 4-hydroperoxyisophosphamide (NSC-227114) and its stereoisomer. Cancer Treat Rep 60:361–368

    Google Scholar 

  • Van Putten LM (1986) Experimental preoperative chemotherapy. Recent Results Cancer Res 103:35–50

    Google Scholar 

  • Venditti JM (1981) Preclinical drug development: rationale and methods. Semin Oncol 8:349

    Google Scholar 

  • Venditti JM, Wesley RA, Plowman J (1984) Current NCI preclinical antitumor screening in vivo: results of tumor panel screening 1975–1982, and future directions. Adv Pharmacol Chemother 20:1–20

    Google Scholar 

  • Voegeli R, Pohl J, Reissmann T, Stekar J, Hilgard P (1986) Therapeutic efficacy of oxazaphosphorines by immunomodulation. In: Chandra P (ed) New experimental modalities in the control of neoplasia. Plenum, New York, pp 243–247

    Google Scholar 

  • Von Hoff DD (1990) He's not going to talk about in vitro predictive assays again, is he? J Natl Cancer Inst 82:96–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Dr. Dietrich Schmähl on the occasion of his 65th birthday

The “Journal of Cancer Research and Clinical Oncology” publishes in loose succession “Editorials” and “Guest editorials” on current and/or controversial problems in experimental and clinical oncology. These contributions represent exclusively the personal opinion of the author

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brock, N., Pohl, J. & Schneider, B. Basic principles in preclinical cancer chemotherapy. J Cancer Res Clin Oncol 116, 411–424 (1990). https://doi.org/10.1007/BF01612986

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01612986

Key words

Navigation