Skip to main content
Log in

The chemical stimulus essential for growth by increase in cell number

  • Abhandlungen
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The development of this study has been a succession of steps each of which rests on the preceding. It falls naturally into three distinct stages. The first is that of

Identification

Here it was found that the lead precipitate present in the meristematic region of root tips grown in Pb-containing culture solutions is a combination of lead with sulfhydryl. In such tips mitosis but not growth by increase in cell size is inhibited. Also it was found that sulfhydryl is concentrated in the meristematic region of normal roots. Therefore the hypothesis was developed that growth by increase in cell number is specifically factored by -SH. The next stage was the

Testing of Extracts

Here it was found that acid extracts of the meristem of root tips accelerated root length growth when controlled by acid extracts of the next distal portion, while alkaline extracts similarly controlled showed no such activity. This proved that the root region of highest sulfhydryl concentration and mitotic activity contains a naturally occurring acid-stable, alkali-labile substance stimulative of root growth in length. These findings are thus physiologically and chemically consistent with the hypothesis. The next stage was the

Testing of Synthetic Compounds

Here the action of a variety of sulfhydryl compounds on mitosis in root tips and reproduction rate in Paramecium was studied, using the same compounds minus the sulfur moiety as controls. It was found that the -SH group stimulates cell division in both plants and animals. Cell size growth is not stimulated. Thus, through identification and testing of the identified group in natural and synthetic compounds, the conclusion is arrived at that

Sulfhydryl is the essential stimulus to growth by increase in cell number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammett, F. S. 1928. Studies in the biology of metals. II. The retardative influence of lead on root growth. Protoplasma4, 187–191.

    Google Scholar 

  2. — andWallace, V. L. 1928. Studies in the biology of metals. VII. The influence of lead on the development of the chick embryo. Journ. Exper. Med.48, 659–665.

    Google Scholar 

  3. — 1929. Studies in the biology of metals. IV. The influence of lead on mitosis and cell size in the growing root. Protoplasma5, 535–542.

    Google Scholar 

  4. — 1928. Studies in the biology of metals. I. The localization of lead by growing roots. Protoplasma4, 183–186.

    Google Scholar 

  5. — 1928. Studies in the biology of metals. III. The localization of lead within the cell of the growing root. Protoplasma4, 135–141.

    Google Scholar 

  6. — andJustice, E. S. 1929. Studies in the biology of metals. V. The selective fixation of lead by root nuclei in mitosis. Protoplasma5, 543–546.

    Google Scholar 

  7. Hammett F. S. 1929. Studies in the biology of metals. VI. The nature of the lead compound deposited in the growing root. Protoplasma5, 547–562.

    Google Scholar 

  8. Gortner, R. A. andHoffman, W. F. 1925. l-cystine. Organic Syntheses, vol. V, ed. by Carl S. Marvel, pub. by John Wiley and Sons, Inc. New York and London.

    Google Scholar 

  9. Newton, E. B., Benedict, S. R. andDakin, H. D. 1927. On thiasine, its structure and identification with ergothioneine. Journ. Biol. Chem.72, 367–373.

    Google Scholar 

  10. Walker, E. 1925. A colour reaction for disulfides. Biochem. Journ.19, 1082–1084.

    Google Scholar 

  11. Jensen, H. andGeiling, E. M. K. 1928. Studies on crystalline insulin. VII. The acetylation of crystalline insulin and the behavior of insulin towards alkali. Journ. pharm. exper. therap.33, 511–520.

    Google Scholar 

  12. Macht, D. andLubin, D. S. 1924. Phyto-pharmacological study of menstrual toxin. Journ. pharm. exper. therap.22, 413–466.

    Google Scholar 

  13. Ephrussi, B. andRapkine, L. 1928. Action des différents sels sur le Spirosteum. Protoplasma5, 35–40.

    Google Scholar 

  14. Hill, R. M. andLewis, H. B. 1924. The metabolism of sulfur. VII. The oxidation of some sulfur compounds related to cystin in the animal organism. Journ. Biol. Chem.59, 557–567.

    Google Scholar 

  15. Westerman, B. D. andRose, W. C. 1927. The availability of disulfide acids as supplementary agents in diets deficient in cystin. Journ. Biol. Chem.75, 533–541.

    Google Scholar 

  16. — — 1928. The availability of disulfide acids as supplementary agents in diets deficient in cystin. II. -dihydroxy- -dithioproprionic acid. Journ. Biol. Chem.79, 413–421.

    Google Scholar 

  17. Marston, H. R. andRobertson, T. B. 1928. The utilization of sulfur by animals. Council for Scientific and Industrial Research. Bull. 39, Commonwealth of Australia.

  18. Westerman, B. D. andRose, W. C. 1928. The oxidation of disulfide acids in the animal organism. Journ. Biol. Chem.79, 423–428.

    Google Scholar 

  19. Ackroyd, H. andHopkins, F. G. 1916. Feeding experiments with deficiencies in the amino acid supply: arginine and histidine as possible precursors of purines. Biochem. Journ.10, 551–576.

    Google Scholar 

  20. Baker, L. E. 1929. The chemical nature of substances required for cell multiplication. II. Action of glutathione, hemoglobin, and ash of liver on the growth of fibroblasts. Journ. Exp. Med.49, 163–182.

    Google Scholar 

  21. Tainter, M. L. 1927. Note on the pharmacology of ergothioneine. Proc. Soc. Exp. Biol. Med.24, 621.

    Google Scholar 

  22. Eagles, B. A. andCox, G. J. 1928. The availability of ergothioneine in supplementing rations deficient in histidine. Journ. Biol. Chem.80, 249–253.

    Google Scholar 

  23. Lewis, G. T. andLewis, H. B. 1927. The metabolism of sulfur. XII. The value of diglycyl - cystine, dialanyl-cystine, and dialanyl - cystine dianhydride for the nutritive requirements of the white rat. Journ. Biol. Chem.73, 535–542.

    Google Scholar 

  24. Gurwitsch, A. 1926. Das Problem der Zellteilung physiologisch betrechtet. Berlin, Springer.

    Google Scholar 

  25. Hopkins, F. G. 1921. An autoxidizable constituent of the cell. Biochem. Journ.15, 286–305.

    Google Scholar 

  26. Shearer, C. 1922. Oxidation processes of the echinoderm egg during fertilization. Proc. Roy. Soc. Lond.93 B, 213–229.

    Google Scholar 

  27. Joyet-Lavergne, Ph. 1929. Glutathion et chondriome. Protoplasma6, 84–112.

    Google Scholar 

  28. Lewis, W. H. andLewis, M. R. 1924. Behavior of cells in cultures. General Cytology, ed. by E. V. Cowdry, pub. by Univ. Chicago Press.

  29. Murray, H. A. Jr. 1926. Physiological Ontogeny. A. Chicken Embryos. IX. The iodine reaction for the quantitative determination of glutathione in the tissues as a function of age. Journ. Gen. Physiol.9, 621–624.

    Google Scholar 

  30. Voegtlin, C. andThompson, J. W. 1926. Glutathione content of tumor animals. Journ. Biol. Chem.70, 801–806.

    Google Scholar 

  31. Denny, F. E. 1926. Effect of thiourea upon bud inhibition and apical dominance of potato. Boyce Thompson Institute for Plant Research. Vol.1, No. 3.

  32. Rivier, H. andBorel, J. 1928. Constitution of thiourea. The absorption spectra of thiourea. Helv. Chim. Acta.11, 1219–1228. Chem. Absts.23, 1115.

    Google Scholar 

  33. Lecloux, J., Vivario, R. etFirket, J. 1927. Teneur en glutathion du sarcome et des tissus normaux. Compt. Rend. Soc. de Biol.97, 1823–1825.

    Google Scholar 

  34. Giroud, A. etBulliard, H. 1928. Glutathion et Kératine. Compt. Rend. Soc. de Biol.98, 500.

    Google Scholar 

  35. Cholodny, N. 1924. Über die hormonale Wirkung der Organspitze bei der geotropischen KrÜmmung. Ber. d. deutsch. bot. Ges.42, 356–362.

    Google Scholar 

  36. SÖding, H. 1925. Zur Kenntnis der Wuchshormone in der Haferkoleoptile. Jahrb. f. wiss. Bot.64, 587.

    Google Scholar 

  37. TÜnnicliffe, H. E. 1925. Glutathione. Reactions between the tissues and the oxidized dipeptide. Biochem. Journ.19, 199–206.

    Google Scholar 

  38. Schukowsky, D. E. 1924. Die Beschaffenheit der Zelloberfläche als bestimmender Faktor des Zustandekommens der Zellteilung. Arch. f. mikr. Anat. u. Entwicklungsmech.103, 499–503.

    Google Scholar 

  39. Lillie, R. S. 1916. The physiology of cell division. VI. Rhythmical changes in the resistance of the dividing sea-urchin egg to hypotonix sea water and their physiological significance. Journ. Exper. Zool.21, 369–402.

    Google Scholar 

  40. Haberlandt, A. 1921. Zur Physiologie der Zellteilungen. VI. Über AuslÖsung von Zellteilungen durch Wundhormone. Naturwissenschaften9, 503–506.

    Google Scholar 

  41. Reiche, H. 1924. Über AuslÖsung von Zellteilungen durch Injektion von Gewebsäften und ZelltrÜmmern. Zeitschr. f. Bot.16, 241–278.

    Google Scholar 

  42. Kayser, C., Le Breton, E. etSchaeffer, G. 1925. Grandeur de la respiration des tissus et mass active au cours de développement des organismes. Compt. Rend. Acad. Sci.181, 255.

    Google Scholar 

  43. Joyet-Lavergne, P. 1926. Sur la signification de la valeur relative du pH dans la germination. Compt. Rend. Soc. de Biol.94, 1184.

    Google Scholar 

  44. Kahn, M. andGoodridge, F. G. 1926. Sulfur metabolism. A review of the literature. Lea and Febiger. Phila. and New York.

    Google Scholar 

  45. Daniels, A. L. andRich, J. K. 1918. The role of inorganic sulfates in nutrition. Journ. Biol. Chem.36, 27–32.

    Google Scholar 

  46. Wohlgemuth, J. 1903. Über die Herkunft der schwefelhaltigen Stoffwechselprodukte im tierischen Organismus. Zeitschr. f. Physiol. Chem.40, 81–100.

    Google Scholar 

  47. Sherwin, C. P., Schiple, G. S. andRose, A. R. 1927. Sulfur metabolism. Journ. Biol. Chem.73, 607–615.

    Google Scholar 

  48. Harrison, D. C. 1927. The autocatalytic oxidation of sulfhydryl compounds. Biochem. Journ.21, 1404–1415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Credit is due to MissElizabeth Justice and MissJane Anderson whose conscientious and painstaking efforts made this study possible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammett, F.S. The chemical stimulus essential for growth by increase in cell number. Protoplasma 7, 297–322 (1929). https://doi.org/10.1007/BF01612813

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01612813

Keywords

Navigation