Skip to main content
Log in

Effects of viscous dissipation on heat transfer parameters for flow between parallel plates

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Zusammenfassung

Für die Strömung zwischen zwei ebenen Platten wird der Einfluss der viskosen Energiedissipation auf Temperaturprofil und Wärmeübertragung in der thermischen Anlaufstrecke untersucht. Die Strömung wird als voll entwickelte Laminarströmung betrachtet. Ein Wärmeentwicklungsparameter wird eingeführt. Die Relation zwischen dem Wärmeentwicklungsparameter und der Eckertschen und der Brinkmanschen Zahl wird diskutiert. Die Entwicklung des Temperaturprofils und der lokalen Nusseltzahl wird graphisch dargestellt für Werte des Wärmeentwicklungsparameters von 0; 0,5; 0,75; 1,0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A :

surface area through which heat is transferred,

a :

one-half of the duct height,

Br :

μ u 2/k (tb−t0), Brinkman number,

C p :

specific heat,

D e :

equivalent diameter of the duct, 4a,

Ec :

u 2/Cp (tb−t0), Eckert number,

h :

heat transfer coefficient,

k :

thermal conductivity,

L :

duct length,

Nu x :

h xDe/k, local Nusselt number,

Pr :

μC p/k, Prandtl number,

q :

rate of heat transfer,

q n :

-q/A, negative rate of heat transfer per unit area,

Re a :

ϱ u 0 a/μ, Reynolds number,

t :

temperature,

u :

velocity inx-direction,

U :

u/u 0, dimensioneless velocity inx-direction,

x :

variable distance along length of duct,

X :

μ x/ϱ a u 0 Pr, dimensionless variable distance along length of duct,

Y :

y/a, dimensionless variable distance across height of duct,

z :

variable distance along width of duct,

y :

variable distance across height of duct,

η:

u 20 μ/a q′′, heat generation parameter,

ϱ:

density,

μ:

viscosity,

θ:

(t−t 0)/(a q′′/k), dimensionless temperature,

Ψ:

−4/GDθ, pseudo-local Nusselt number

b :

bulk,

j :

atjth position alongx axis,

k :

atkth position acrossy axis,

w :

at the walls or plates,

x :

local,

0:

at initial position alongx axis

References

  1. H. C. Brinkman,Heat Effects in Capillary Flow I, Appl. Sci. Res., Sect. A, Vol.2, 120–124 (1951).

    Google Scholar 

  2. J. E. Gerrard, J. K. Appeldoorn, andW. Phillippoff,Heating in Capillary Flow, Nature194, 1067–1068, June (1962).

    Google Scholar 

  3. R. B. Bird,Viscous Heat Effects in Extrusion of Molten Plastics, Soc. Plastics Eng. J.11, 35–40 (1955).

    Google Scholar 

  4. R. B. Brid, W. S. Steward, andE. N. Lightfoot,Transport Phenomena, New York: John Wiley and Sons, Inc., p. 62, p. 278 (1963).

    Google Scholar 

  5. W. M. Kays,Numerical Solutions for Laminar Flow Heat Transfer in Circular Tubes, Technical Report No.20, Dept. of Mech. Engr., Stanford University (Oct. 1953), and Trans. ASME (1955), pp. 1265–1274.

  6. L. Lapidus,Digital Computation for Chemical Engineers, New York: McGraw-Hill Book Company, Inc., p. 254, p. 137 (1962).

    Google Scholar 

  7. L. E. Erickson, C. S. Wang, C. L. Hwang, andL. T. Fan,Heat Transfer to Magnetohydrodynamic Flow in a Flat Duct, J. of Applied Math. and Physics (ZAMP)15, No. 4, 408–418 (1964).

    Google Scholar 

  8. C. L. Hwang andL. T. Fan,Finite Difference Analysis of Forced Convection Heat Transfer in Entrance Region of a Flat Rectangular Duct, Applied Scientific Research, Sect. A, Vol.13, pp. 401–422 (1964).

    Google Scholar 

  9. M. G. Salvadori andM. L. Baron,Numerical Methods in Engineering, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1961), 2nd ed., pp. 70–75.

    Google Scholar 

  10. E. R. G. Eckert andR. M. Drake, Jr.,Heat and Mass Transfer, New York: McGraw-Hill Book Company, Inc., 2nd ed., pp. 171–173 (1959).

    Google Scholar 

  11. R. Siegel andE. M. Sparrow,Simultaneous Development of Velocity and Temperature Distributions in a Flat Duct with Uniform Wall Heating, A.I.Ch.E. Journal, Vol.5, No. 1, pp. 73–75 (March, 1959).

    Google Scholar 

  12. I. Michiyoshi andR. Matsumoto,Heat Transfer by Hartman's Flow in Thermal Entrance Region, Int. J. Heat and Mass Transfer, Vol.7, 101–112 (1964).

    Google Scholar 

  13. R. D. Cess andE. C. Shaffer,Heat Transfer to Laminar Flow between Parallel Plates with a Prescribed Wall Heat Flux, Appl. Sci. Res., Sect. A, Vol.8, 339–344 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by the Air Force Office of Scientific Research Grant AF-AFOSR-463-64.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, CL., Knieper, P.J. & Fan, LT. Effects of viscous dissipation on heat transfer parameters for flow between parallel plates. Journal of Applied Mathematics and Physics (ZAMP) 16, 599–610 (1965). https://doi.org/10.1007/BF01590965

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01590965

Keywords

Navigation