Skip to main content
Log in

A second look at the method of random walks

  • Originals
  • Published:
Stochastic Hydrology and Hydraulics Aims and scope Submit manuscript

Abstract

A formal statistical discussion of the origins of the random walk and its relation to the classic advection-dispersion equation is given. At issue is the common use of Gaussian distributed steps in producing the desired dispersive effects. Shown are alternative solutions to the basic Langevin equation describing mass displacements based on non-Gaussian, white increments. In particular, the results reveal that uniform or symmetric-triangular steps can be employed without loss of generality in accuracy of the solution (over all Peclet numbers) and may yield significant savings in the computational generation of the random deviates required in the Monte Carlo procedures of the random walk method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, L. 1974: Stochastic Differential Equations: Theory and Applications, John Wiley and Sons, New York, 228 p

    Google Scholar 

  • Barry, D. A. 1990: Supercomputers and their use in modeling subsurface solute transport, Rev. Geophysics., AGU 28(3), 277–295

    Google Scholar 

  • Cox, D. R.; Miller, H. D. 1965: The Theory of Stochastic Processes. Chapman and Hall, New York, 389 p

    Google Scholar 

  • Dagan, G. 1987: Theory of solute transport by groundwater, Ann. Rev. Fluid Mech. 19, 183–215

    Google Scholar 

  • Dimou, K. N.; Adams, E. E. 1989: 2-D particle tracking model for estuary mixing in estuary and coastal modeling, Proc. ASCE Conf., New York, 473–481

  • Filliben, J. J. 1975: The probability plot correlation coefficient test for normality, Technometrics 17(1), 111–117

    Google Scholar 

  • Fisher, H. B.; List, E. J.; Koh, R. C. Y.; Imberger, J.; Brook, N.H. 1979: Mixing in Inland and Coastal Waters, Academic Press, New York, 483 p

    Google Scholar 

  • Folks, J. L.; Chhikara, R. S. 1978: The inverse gaussian distribution and its statistical appication — a review, J. Royal. Stat. Soc. B40(3), 263–289

    Google Scholar 

  • Gardiner, C. W. 1985: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences, 2nd ed., Springer-Verlag, New York, 442 p

    Google Scholar 

  • Gupta, V. K.; R. N. Bhattacharya; Sposito, G. 1981: A molecular approach to the foundations of the theory of solute transport in porous media I. Conservative solutes in homogeneous isotropic saturated media, J. Hydrology 50, 355–370

    Google Scholar 

  • Hastings, N. A. J.; Peacock, J. B. 1975: Statistical Distributions, Butterworths, London, 130 p

    Google Scholar 

  • Kinzelbach, W. 1988: The Random Walk Method in Pollutant Transport Simulation in Groundwater Flow and Quality Modelling, eds. E. Custodio et al, D. Reidel Publ. Co., Rotterdam, The Netherlands, 227–245

    Google Scholar 

  • Kinzelbach, W. 1986: Groundwater Modelling: An Introduction with Sample Progams in Basic, Elsevier, New York, 298–315

    Google Scholar 

  • Kinzelbach, W.; Uffink, G. J. M. 1991: The random walk method and extensions in groundwater modelling in transport processes in porous media, NATO ASI Series E No. 202, eds. J. Bear and M. Y. Corapcioglu, Kluwer Academic Publ., Dordrecht, The Netherlands, 763–787

    Google Scholar 

  • Passos, A. 1993: Alternative random step distributions in particle tracking model, Proc. Engr. Arch. Symp., Prairie View A&M, Prairie View, TX, Mar. 15–16, 194–198

  • Patel, J. K.; Kapadia, C. H.; Owen, D. B. 1976: Handbook of Statistical Distributions, John Wiley and Sons, New York.

    Google Scholar 

  • Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W.T. 1986: Numerical Recipes: The Art of Scientific Computing, Cambridge Univ. Press, New York, 818 p

    Google Scholar 

  • Prickett, T. A.; Naymik, T. G.; Lonnquist, C. G. 1981: A “Random Walk” Solute Transport Model for Selected Groundwater Quality Evaluations, Illinois State Water Survey Bull. 65,103 p

  • Rumelin, W. 1982: Numerical treatment of stochastic differential equations, SIAM J. Numer. Anal. 19(3), 604–613

    Google Scholar 

  • Sawford, B. L. 1986: Generalized random forcing in random-walk turbulent dispersion models, Phys. Fluids 29(11), 3582–3585

    Google Scholar 

  • Thomson, D. J. 1984: Random walk modelling of diffusion in inhomogeneous turbulence, J. Royal Meteorological. Soc. 110, 1107–1120

    Google Scholar 

  • Tompson, A. F. B.; Gelhar, L. W. 1990: Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media, Water Resourc. Res. 26(10), 2541–2562

    Google Scholar 

  • Uffink, G. J. M. 1985: A random walk method for the simulation of macrodispersion in a stratified aquifer in relation of groundwater ouantity and quality, IAHA Publ. 146, 103–114

    Google Scholar 

  • Valocchi, A. J.; Quinodoz, A.M. 1989: Application of the random walk method to simulate the transport of kinetically adsorbing solutes in groundwater contamination, IAHS Publ. no. 185, 35–42

  • Vogel, R. M. 1986: The probability plot correlation coefficient test for the normal, lognormal, and gumbel distributional hypotheses, Water Resourc. Res. 22(4), 587–590

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hathhorn, W.E. A second look at the method of random walks. Stochastic Hydrol Hydraul 10, 319–329 (1996). https://doi.org/10.1007/BF01581872

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01581872

Key words

Navigation