Skip to main content
Log in

\(q\bar q\) pair creation in a flux tube with confinement

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We calculate the effect of radial confinement on the Schwinger pair production rate by solving the Dirac equation in a flux-tube cylinder containing a constant chromoelectric field in the longitudinal direction. We show how the Dirac equation separates into radial and longitudinal equations for a mass term which has an arbitrary radial dependence and introduce radial confinement by having a finite mass inside the cylinder and an infinitely large mass outside. The resulting boundary conditions are equivalent to the MIT boundary condition. The equations are solved analytically for a constant quark mass inside the flux-tube, which acts like a waveguide. The discretization of the transverse wave vector which has a continuous spectrum in the non-confined case leads to a large suppression of the Schwinger pair-production rate for small radii. The minimal radius where pairs are created decreases with increasing field strength. The suppression turns out to be larger for heavier quarks than for light quarks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Schwinger: Phys. Rev. 82 (1951) 664

    Google Scholar 

  2. M. Soffel, B. Mueller, Greiner, W.: Phys. Rep. 85 (1982) 51; W. Greiner, B. Mueller, J. Rafelski: In: Quantum electrodynamics of strong fields Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  3. E. Brezin, C. Itzykson: Phys. Rev. D2 (1970) 1191

    Google Scholar 

  4. H. Neuberger: Phys. Rev. D20 (1979) 2936; C.B. Chiu, S. Nissinov: Phys. Rev. D20 (1979) 945

    Google Scholar 

  5. H.G. Dosch, D. Gromes: Phys. Rev. D33 (1986) 1378

    Google Scholar 

  6. P.H. Cox, Yidiz: Phys. Rev. D 32 (1985) 819

    Google Scholar 

  7. A. Casher, H. Neuberger, S. Nussinov: Phys. Rev. D20 (1979) 179

    Google Scholar 

  8. N.K. Glendenning, T. Matsui: Phys. Rev. D28 (1983) 2890

    Google Scholar 

  9. F.E. Low: Phys. Rev. D12 (1975) 163

    Google Scholar 

  10. F.E. Low: Phys. Rev. Lett. 34 (1975) 1286

    Google Scholar 

  11. T.S. Biro, H.B. Nielson, J. Knoll: Nucl. Phys. B245 (1984) 449

    Google Scholar 

  12. R.-C. Wang, C.-Y. Wong: Phys. Rev. D38 (1988) 348

    Google Scholar 

  13. C. Martin, D. Vautherin: Phys. Rev. D38 (1988) 3593; C. Martin, D. Vautherin: Phys. Rev. D40 (1989) 1667

    Google Scholar 

  14. Th. Schoenfeld et al.: Phys. Lett. B247 (1990) 5

    Google Scholar 

  15. T. Damour: In: Proceedings of the first Marcel Grossmann meeting on general relativity, edited by Ruffini, p. 459, Amsterdam: North Holland 1977

    Google Scholar 

  16. J.D. Bjorken, S.D. Drell: Relativistic quantum mechanics, New York: McGraw-Hill 1965

    Google Scholar 

  17. A. Chodos, R.L. Jaffe, C.B. Thorn, V. Weiskopf: Phys. Rev. D9 (1974) 3471; A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn: Phys. Rev. D10 (1974) 2599

    Google Scholar 

  18. M. Abramowitz, I. Stegun: Handbook of mathematical functions, New York: Dover 1965

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavel, H.P., Brink, D.M. \(q\bar q\) pair creation in a flux tube with confinement. Z. Phys. C - Particles and Fields 51, 119–125 (1991). https://doi.org/10.1007/BF01579568

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01579568

Keywords

Navigation