Skip to main content
Log in

KrF-excimer-laser-induced native oxide removal from Si (100) surfaces studied by Auger electron spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The mechanism of KrF-excimer-laser cleaning of Si(100) surfaces was studied by Auger Electron Spectroscopy (AES) and Low-Energy Electron Diffraction (LEED) spectroscopy. The dependence of the cleaning efficiency on the laser fluence was investigated by using a mildly focused laser beam and carefully measuring the energy density distribution of the laser spot impinging on the sample. These values were compared with the AES spectra measured in different points of the irradiated area and with the morphology observed by optical microscopy. Samples as received from the manufacturer were first investigated. It was found that desorption of weakly bonded organic adsorbates occurs at energy densities as low as 0.3 J/cm2, whereas significant oxide removal takes place only at an energy density above 0.8 J/cm2, which produces damaged surface morphologies. The experimental findings, in agreement with the temperatures calculated for the laser-induced Si heating, indicated that a large fraction of the oxide film is dissolved in the molten silicon, leading to oxygen concentration below the AES detection limit only when the melted depth was of the order of several hundred nanometers. Atomically clean, damage-free Si(100) surfaces were obtained after irradiation of samples pre-etched for 1 min in a HF: H2O (5%) solution, which had only a thin SiO x (x < 2) layer and F, C and O containing adsorbed species. Complete contaminant elimination was achieved in this case with 15 pulses at 0.8 J/cm2 without any damaging of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Martin, D.E. Savage, W. Moritz, M.G. Lagally: Phys. Rev. Lett.56, 1936 (1985)

    Google Scholar 

  2. J.P. Becker, R.G. Long, J.E. Mahan: J. Vac. Sci. Technol. A12, 174 (1994)

    Google Scholar 

  3. D. Dijkkamp, E.J. van Loenen, A.J. Hoeven, J. Dieleman: J. Vac. Sci. Technol. A8, 218 (1990)

    Google Scholar 

  4. R. Reif: J. Vac. Sci. Technol. A2, 429 (1984)

    Google Scholar 

  5. E. Taglauer: Appl. Phys. A51, 238 (1990)

    Google Scholar 

  6. W. Kern, D.A. Puotinen: RCA Rev.31, 187 (1970)

    Google Scholar 

  7. A. Ishizaka, Y. Shiraki: J. Electrochem. Soc.133, 666 (1986)

    Google Scholar 

  8. E. Yablonovitch, D.L. Allara, C.C. Chang, T. Gmitter, T.B. Bright: Phys. Rev. Lett.57, 249 (1986)

    Google Scholar 

  9. M. Grundner, H. Jacob: Appl. Phys. A39 173 (1986)

    Google Scholar 

  10. V.A. Burrows, Y.J. Chabal, G.S. Higashi, K. Raghavachari, S.B. Christmas: Appl. Phys. Lett.53, 998 (1988)

    Google Scholar 

  11. P.J. Grunthaner, F.G. Grunthaner, R.W. Fathauer, T.L. Lin, M.H. Hecht, L.D. Bell, W.J. Kaiser: Thin Solid Films183, 197 (1989)

    Google Scholar 

  12. G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari: Appl, Phys. Lett.56, 656 (1990)

    Google Scholar 

  13. P. Dumas, Y.J. Chabal, G.S. Higashi: Phys. Rev. Lett.65, 1124 (1990)

    Google Scholar 

  14. S.R. Kasi; M. Lieht, P.A. Thiry, H. Dallaporta, M. Offenberg: Appl. Phys. Lett.59, 108 (1991)

    Google Scholar 

  15. Y.F. Lu, M. Takai, S. Komuro, T. Shiokawa, Y. Aoyagi: Appl. Phys. A59, 281 (1994)

    Google Scholar 

  16. K. Imen, S.J. Lee, S.D. Allen: Appl. Phys. Lett.58, 203 (1994)

    Google Scholar 

  17. W. Zapka, W. Ziemlich, A.C. Tam: Appl. Phys. Lett.58, 2217 (1991)

    Google Scholar 

  18. D.M. Zehner, C.W. White, G.W. Ownby: Appl. Phys. Lett.36, 56 (1980)

    Google Scholar 

  19. D.M. Zehner, C.W. White, G.W. Ownby: Surf. Sci.92, L67 (1980)

    Google Scholar 

  20. A. McKinley, A.W. Parke, G.J. Hughes, J. Fryar, R.H. Williams: J. Phys. D13, L193 (1980)

    Google Scholar 

  21. A. McKinley, R.H. Williams, A.W. Parke, G.P. Srivastava: Vacuum31, 549 (1981)

    Google Scholar 

  22. P.L. Cowan, J.A. Golovchenko: J. Vac. Sci. Technol.17, 1197 (1980)

    Google Scholar 

  23. V.M. Bermudez: J. Vac. Sci. Technol.20, 51 (1982)

    Google Scholar 

  24. Z.L. Wang, J.F.M. Westendorp, F.W. Saris: Nucl. Instrum. Methods211, 193 (1983)

    Google Scholar 

  25. D.M. Zehner, J.R. Nooham, H.L. Davis, C.W. White: J. Vac. Sci. Technol.18, 852 (1981)

    Google Scholar 

  26. Y.J. Chabal, J.E. Rowe, D.A. Zwemer: Phys. Rev. Lett.46, 600 (1983)

    Google Scholar 

  27. J. Kubatova, V. Chab, I. Lukes, P. Jiricek, F. Fendrych: Appl. Surf. Sci.43, 297 (1989)

    Google Scholar 

  28. R. Tsu, D. Lubben, T.R. Bramblett, J.E. Greene: J. Vac. Sci. Technol. A9, 223 (1991)

    Google Scholar 

  29. H. Schlemm, F. Buchmann, H.D. Geiler: Appl. Surf. Sci.54, 298 (1992)

    Google Scholar 

  30. J.K. Watanabe, U.J. Gibson: J. Vac. Sci. Technol. A10, 823 (1992)

    Google Scholar 

  31. P.J. Grunthaner, M.H. Retch, F.J. Grunthaner, N.H. Johnson: J. Appl. Phys.81, 629 (1987)

    Google Scholar 

  32. N. Miyata, K. Moriki, M. Fujisawa, M. Hirayama, T. Matsukawa, T. Hattori: Jpn. J. Appl. Phys.28, L2072 (1989)

    Google Scholar 

  33. H. Akazawa, Y. Utsumi, J. Takahashi, T. Urisu: Appl. Phys. Lett.57, 2302 (1990)

    Google Scholar 

  34. K. Sugioka, S. Wada, A. Tsunemi, T. Sakai, H. Takai, H. Moriwaki, A. Nakamura, H. Tashiro, K. Toyoda: Jpn. J. Appl. Phys.32, 6185 (1993)

    Google Scholar 

  35. C. Fiori, R.A.B. Devine: Phys. Rev. Lett.23, 2081 (1984)

    Google Scholar 

  36. C. Fiori, R.A.B. Devine: Appl. Phys. Lett.47, 361 (1985)

    Google Scholar 

  37. S. De Unamuno, E. Fogarassy: Appl. Surf. Sci.36, 1 (1989)

    Google Scholar 

  38. P. Baeri, S. Campisano: InLaser Annealing of Semiconductors, ed. by J.M. Poate, J.W. Mayer (Academic, New York, 1982)

    Google Scholar 

  39. G.E. Jellison, D.H. Lowndes, D.N. Mashburn, R.F. Wood: Phys. Rev. B34, 2407 (1986)

    Google Scholar 

  40. J. Solis, C.N. Afonso: J. Appl. Phys.69, 2105 (l991)

    Google Scholar 

  41. R. Kelly, J.E. Rothenberg: Nucl. Instrum. Methods7/8, 755 (1985)

    Google Scholar 

  42. M. Berti, L.F. Dona dalle Rose, A. Drigo, C. Cohen, J. Siejka, G.G. Bentini, E. Jannitti: Phys. Rev. B34, 2346 (1985)

    Google Scholar 

  43. N. Miyata, M. Shigeno, Y. Arimoto, T. Ito: J. Appl. Phys.74, 5275 (l993)

    Google Scholar 

  44. K. Hoh, H. Koyama, K. Uda, Y. Miura: Jpn. J. Appl. Phys.19, L375 (1980)

    Google Scholar 

  45. I. Lukes; R. Sasik, J. Kubtov: Rev, Roum. Phys.34, 909 (1989)

    Google Scholar 

  46. I. Lukes, R. Sasik, J. Polecha, J. Kubatova:Proc. 5th Int'1 School on Quantum Electronics, Sunny Beach (Bulgaria) (1988)

  47. L. Gmelin:Gmelin's Handbuch (VCH, Heidelberg, 1959)

    Google Scholar 

  48. R. Larciprete, E. Borsella: J. Electron. Spectrosc. Relat. Phenom. (in press)

  49. I. Ferguson:Auger Microprobe Analysis (IOP, Bristol 1989)

    Google Scholar 

  50. C.C. Chang, D.M. Boulin: Surf. Sci.69, 385 (1977)

    Google Scholar 

  51. O. Millo, A. Many, Y. Goldstein: J. Vac. Sci. Technol. A7, 2688 (1989)

    Google Scholar 

  52. R. Memeo, F. Ciccacci, C. Mariani, S. Ossicini: Thin Solid Films109, 159 (1983)

    Google Scholar 

  53. M.P. Seah, W.A. Dentch: Surf. Interface Anal.1, 2 (1979)

    Google Scholar 

  54. A. Ishizaka, S. Iwata, Y. Kamigaki: Surf. Sci.84, 355 (l979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larciprete, R., Borsella, E. & Cinti, P. KrF-excimer-laser-induced native oxide removal from Si (100) surfaces studied by Auger electron spectroscopy. Appl. Phys. A 62, 103–114 (1996). https://doi.org/10.1007/BF01575708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01575708

PACS

Navigation