Skip to main content
Log in

Electron microscopic analysis of two-dimensional crystals of the Ca2+-transport ATPase — a freeze-fracture study

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Two distinct forms of Ca2+-ATPase crystals have been analysed in sarcoplasmic reticulum (SR) membranes. The E1-type crystals, induced by Ca2+ or lanthanide ions, consist of single chains of ATPase monomers, and the E2-type crystals, induced by vanadate ions, consist of dimer chains. Using improved freeze-fracture techniques we have obtained high-resolution images of complementary surface replicas of SR membranes containing these crystal forms. In E1 crystals, the concave fracture (P) faces display obliquely oriented rows of intramembrane particles (IMPs) spaced at ∼- 6–7 nm along both crystal axes, while the convex fracture (E) faces show corresponding rows of pits. In E2 crystals, regular arrays of oblique parallel ridges with spacing of ∼- 10.5–11 nm appear on the P-faces and complementary grooves or furrows on the E-faces. In many instances the ridges break up into elongated particles repeating every 5.5 nm. When the direction of the shadow is almost parallel to the axis of the ridges, these 9.5 nm particles can be resolved into two domains, which represent intramembranous contacts between the two monomers of the two adjacent dimer chains. Complementary grooves on the E-faces can also be resolved into rows of pits complementary to the particles of the ridges on the P-faces. In the control SR membranes, randomly dispersed IMPs and corresponding pits are observed on the P- and E-faces, respectively. The data suggest that transport of Ca2+ involves significant structural changes of the enzyme molecule, reflected in the ATPase-ATPase interactions both on the cytoplasmic surface and in the lipid bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersen, J. P., Jorgensen, P. L. &Moller, J. V. (1985) Direct demonstration of structural changes in soluble monomeric Ca2+-ATPase associated with Ca2+ release during the transport cycle.Proc. natn. Acad. Sci. U.S.A. 82, 4573–7.

    Google Scholar 

  • Blasie, J. K., Herbette, L. G., Pascolini, D., Skita, V., Pierce, D. H. &Scarpa, A. (1985) Time resolved x-ray diffraction studies of the sarcoplasmic reticulum membrane during active transport.Biophys. J. 48, 9–18.

    PubMed  Google Scholar 

  • Blasie, J. K., Herbette, L., Pierce, D., Pascolini, D., Scarpa, A. &Fleischer, S. (1982) Static and time resolved structural studies of the Ca2+-ATPase of isolated sarcoplasmic reticulum.Ann. N.Y. Acad. Sci. 402, 478–84.

    PubMed  Google Scholar 

  • Boyd, D. W. &Kustin, K. (1985) Vanadium: a versatile biochemical effector with an elusive biological function.Adv. lnorg. Biochem. 6, 311–65.

    Google Scholar 

  • Brandl, C. J., Green, N. M., Korczak, B. &Maclennan, D. H. (1986) Amino acid sequence of the Ca2+ + Mg2+-ATPase of rabbit fast-twitch skeletal muscle sarcoplasmic reticulum deduced from its cDNA sequence: homologies and mechanistic implications.Cell 44, 596–607.

    Google Scholar 

  • Bühle, Jr.,E. L., Knox, B. E., Serpersu, E. &Aebi, U. (1983) The structure of the Ca2+-ATPase as revealed by electron microscopy and image processing of ordered arrays.J. ultrastruct. Res. 85, 186–203.

    PubMed  Google Scholar 

  • Castellani, L., Hardwicke, P. M. D. &Vibert, P. (1985) Dimer ribbons in the three-dimensional structure of sarcoplasmic reticulum.J. molec. Biol. 185, 579–94.

    PubMed  Google Scholar 

  • Chamberlain, B. K., Berenski, C. J., Jung, C. Y. &Fleischer, S. (1983) Determination of the oligomeric structure of the Ca2+-pump protein in canine cardiac sarcoplasmic reticulum membranes using radiation inactivation analysis.J. biol. Chem. 258, 11997–2001.

    PubMed  Google Scholar 

  • Costello, M. J., Fetter, R. &Corless, J. M. (1984) Optimum conditions for the plunge freezing of sandwiched samples. InScience of Biological Specimen Preparation (edited byRevel, J. -P., Barnard, T. &Haggis, G. H.), pp. 105–15. Chicago: SEM Inc., AMP O'Hare.

    Google Scholar 

  • Csermely, P., Martonosi, A., Levy, G. C. &Ejchart, A. J. (1985a)51V-n.m.r. analysis of the binding of vanadium (V) oligoanions to sarcoplasmic reticulum.Biochem. J. 230, 807–15.

    PubMed  Google Scholar 

  • Csermely, P., Varga, S. &Martonosi, A. (1985b) Competition between decavanadate and fluorescein isothiocyanate on the Ca2+-ATPase of sarcoplasmic reticulum.Eur. J. Biochem. 150, 455–60.

    PubMed  Google Scholar 

  • Deamer, D. W. &Baskin, R. J. (1969) Ultrastructure of sarcoplasmic reticulum preparations.J. Cell. Biol. 42, 296–307.

    PubMed  Google Scholar 

  • Dupont, Y., Harrison, S. G. &Hasselbach, W. (1973) Molecular organization in the sarcoplasmic reticulum membrane studied by x-ray diffraction.Nature, lond. 244, 555–8.

    Google Scholar 

  • Dux, L. &Martonosi, A. (1983) Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate.J. biol. Chem. 258, 2599–603.

    PubMed  Google Scholar 

  • Dux, L., Taylor, K. A., Ting-Beall, H. P. &Martonosi, A. (1985) Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions.J. biol. Chem. 260, 11730–43.

    PubMed  Google Scholar 

  • Ferguson, D. G., Franzini-Armstrong, C., Castellani, L., Hardwicke, P. M. D. &Kenney, L. J. (1985) Ordered arrays of Ca2+-ATPase on the cytoplasmic surface of isolated sarcoplasmic reticulum.Biophys. J. 48, 597–605.

    PubMed  Google Scholar 

  • Fetter, R. D. &Costello, M. J. (1986) A procedure for obtaining complementary replicas of ultra-rapidly frozen sandwiched samples.J. Microsc. 141, 277–92.

    PubMed  Google Scholar 

  • Franzini-Armstrong, C. &Ferguson, D. G. (1985) Density and disposition of Ca2+-ATPase in sarcoplasmic reticulum membrane as determined by shadowing techniques.Biophys. J. 48, 607–15.

    PubMed  Google Scholar 

  • Froehlich, J. P. &Heller, P. F. (1985) Transient-state kinetics of the ADP-insensitive phosphoenzyme reticulum: implications for transient-state calcium translocation.Biochemistry 24, 126–36.

    PubMed  Google Scholar 

  • Grover, A. K., Samson, S. E., Berenski, C. J. &Jung, C. Y. (1985) Target size of Ca-pumps in pig coronary artery smooth muscle.Life Sci. 37, 2193–8.

    PubMed  Google Scholar 

  • Hasselbach, W. &Elfvin, L. G. (1967) Structural and chemical asymmetry of the calcium-transporting membranes of the sarcotubular system as revealed by electron microscopy.J. ultrastruct. Res. 17, 598–622.

    PubMed  Google Scholar 

  • Herbette, L., Defoor, P., Fleischer, S., Pascolini, D., Scarpa, A. &Blasie, J. K. (1985) The separate profile structures of the functional calcium pump protein and the phospholipid bilayer within isolated sarcoplasmic reticulum membranes determined by X-ray and neutron diffraction.Biochim. biophys. Acta 817, 103–22.

    PubMed  Google Scholar 

  • Herbette, L., Marquardt, J., Scarpa, A. &Blasie, J. K. (1977) A direct analysis of lamellar X-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum.Biophys. J. 20, 245–72.

    PubMed  Google Scholar 

  • Ho, M.-H., Taylor, K. A. &Martonosi, A. N. (1986) Structure of frozen hydrated vanadate induced sarcoplasmic reticulum Ca2+-ATPase crystals.Biophys. J. 49, 570a.

    Google Scholar 

  • Hymel, L., Maurer, A., Berenski, C., Jung, C. Y. &Fleischer, S. (1984) Target size of calcium pump protein from skeletal muscle sarcoplasmic reticulum.J. biol. Chem. 259, 4890–5.

    PubMed  Google Scholar 

  • Ikemoto, N., Sreter, F. A., Nakamura, A. &Gergely, J. (1968) Tryptic digestion and localization of calcium uptake and ATPase activity in fragments of sarcoplasmic reticulum.J. ultrastruct. Res. 23, 216–32.

    Google Scholar 

  • Inesi, G. (1985) Mechanism of calcium transport.Ann. Rev. Physiol. 47, 573–601.

    Google Scholar 

  • Jilka, R. L., Martonosi, A. N. &Tillack, T. W. (1975) Effect of the purified [Mg2+ + Ca2+-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastucture of phospholipid vesicle.J. biol. Chem. 250, 7511–24.

    PubMed  Google Scholar 

  • Jona, R. L., Martonosi, A. (1986) The effects of membrane potential and lanthanides on the conformation of the Ca2+-transport ATPase in sarcoplasmic reticulum.Biochem. J. 234, 363–71.

    PubMed  Google Scholar 

  • Kempner, E. S. &Schlegel, W. (1979) Size determination of enzyme by radiation inactivation.Anal. Biochem. 92, 2–10.

    PubMed  Google Scholar 

  • Maclennan, D. H., Brandl, C. J., Korczak, B. &Green, N. H. (1985) Amino acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum deduced from its complementary DNA sequence.Nature, Land. 326, 696–700.

    Google Scholar 

  • Martin, D. W. &Tanford, C. (1984) Solubilized monomeric sarcoplasmic reticulum Ca pump protein. Phosphorylation by inorganic phosphate.FEBS Lett. 177, 146–50.

    PubMed  Google Scholar 

  • Martin, D. W., Tanford, C. &Reynolds, J. A. (1984) Monomeric solubilized sarcoplasmic reticulum Ca pump protein: demonstration of Ca binding and dissociation coupled to ATP hydrolysis.Proc. natn. Acad. Sci. U.S.A. 81, 6623–6.

    Google Scholar 

  • Martonosi, A. (1968) Sarcoplasmic reticulum. V. The structure of sarcoplasmic reticulum membranes.Biochim. biophys. Acta 150, 694–704.

    PubMed  Google Scholar 

  • Martonosi, A. N. &Beeler, T. J. (1983) Mechanism of Ca2+ transport by sarcoplasmic reticulum. InHandbook of Physiology. Section 10. Skeletal Muscle (edited byPeachey, L. D., Adrian, R. H. &Geiger, S. R.), pp. 417–85. Bethesda: American Physiological Society.

    Google Scholar 

  • Maurer, A. &Fleischer, S. (1984) Decavanadate is responsible for vanadate induced two-dimensional crystals in sarcoplasmic reticulum.J. Bioenerg. Biomembr. 16, 491–505.

    PubMed  Google Scholar 

  • Nakamura, H., Jilka, R. L., Boland, R. &Martonosi, A. N. (1976) Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.J. biol. Chem. 251, 5414–23.

    PubMed  Google Scholar 

  • Packer, L., Mehard, C. W., Meissner, G., Zahler, W. L. &Fleischer, S. (1974) The structural role of lipids in mitochondrial and sarcoplasmic reticulum membranes. Freeze-fracture electron microscopy studies.Biochim. biophys. Acta 363, 159–81.

    PubMed  Google Scholar 

  • Peracchia, C., Dux, L. &Martonosi, A. (1984) Crystallization of intramembrane particles in rabbit sarcoplasmic reticulum vesicle by vanadate.J. Musc. Res. Cell Motility 5, 431–42.

    Google Scholar 

  • Pick, U. (1982) The interaction of vanadate ions with the Ca2+-ATPase from sarcoplasmic reticulum.J. biol. Chem. 257, 6111–19.

    PubMed  Google Scholar 

  • Pick, U. &Karlish, S. J. D. (1982) Regulation of the conformational transition in the Ca2+-ATPase from sarcoplasmic reticulum by pH, temperature and calcium ion.J. biol. Chem. 257, 6120–6.

    PubMed  Google Scholar 

  • Saito, A., Wang, C.-T. &Fleischer, S. (1978) Membrane asymmetry and enhanced ultrastructural detail of sarcoplasmic reticulum revealed with use of tannic acid.J. Cell Biol. 79, 601–16.

    PubMed  Google Scholar 

  • Scales, D. &Inesi, G. (1976) Assembly of ATPase protein in sarcoplasmic reticulum membranes.Biophys. J. 16, 735–51.

    PubMed  Google Scholar 

  • Tanford, C. (1984) Twenty questions concerning the reaction cycle of the sarcoplasmic reticulum calcium pump.CRC crit. Rev. Biochem. 17, 123–52.

    PubMed  Google Scholar 

  • Taylor, K. A., Dux, L. &Martonosi, A. (1984) Structure of the vanadate-induced crystals of sarcoplasmic reticulum Ca2+-ATPase.J. molec. Biol. 174, 193–204.

    PubMed  Google Scholar 

  • Taylor, K. A., Dux, L. &Martonosi, A. (1986a) Three-dimensional reconstruction of negatively stained crystals of the Ca2+-ATPase from muscle sarcoplasmic reticulum.J. molec. Biol. 187, 417–27.

    PubMed  Google Scholar 

  • Taylor, K. A., Ho, M-H. &Martonosi, A. (1986b) Image analysis of the Ca2+-ATPase from sarcoplasmic reticulum.N.Y. Acad. Sci. 483, 31–43.

    Google Scholar 

  • Tillack, T. W., Boland, R. &Martonosi, A. (1974) The ultrastructure of developing sarcoplasmic reticulum.J. biol. Chem. 249, 624–33.

    PubMed  Google Scholar 

  • Ting-Beall, H. P., Burgess, F. M. &Robertson, J. D. (1986a) Particles and pits matched in native membranes.J. Microsc. 142, 311–16.

    PubMed  Google Scholar 

  • Ting-Beall, H. P., Dux, L. &Martonosi, A. N. (1986b) Complementary freeze-fracture preparations of Ca2+-ATPase crystals from sarcoplasmic reticulum.Biophys. J. 49, 570a.

    Google Scholar 

  • Varga, S., Csermely, P. &Martonosi, A. (1985) The binding of vanadium (V) oligoanions to sarcoplasmic reticulum.Eur. J. Biochem. 148, 119–26.

    PubMed  Google Scholar 

  • Vilsen, B. &Andersen, J. P. (1986) Occlusion of Ca2+ in soluble monomeric sarcoplasmic reticulum Ca2+-ATPase.Biochim. biophys. Acta 855, 429–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ting-Beall, H.P., Burgess, F.M., Dux, L. et al. Electron microscopic analysis of two-dimensional crystals of the Ca2+-transport ATPase — a freeze-fracture study. J Muscle Res Cell Motil 8, 252–259 (1987). https://doi.org/10.1007/BF01574593

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01574593

Keywords

Navigation