Skip to main content
Log in

Osmosensitivity of the 2H+−K+-exchange and the H+-ATPase complex F0F1 in anaerobically grownEscherichia coli

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli grown anaerobically for osmotic studies upon increased osmolarity in alkaline medium carried out H+−K+-exchange in two steps, the first of which was DCCD1 sensitive and osmo-dependent and had the 2H+/K+ stoichiometry. H+-efflux in the presence of protonophore (CCCP) upon increase of osmolarity was shown to be high and inhibited by DCCD, whereas H+-efflux induced by a decrease of osmolarity was small and not inhibited by DCCD. The 2H+/K+-exchange was absent intrkA anduncA mutants. InuncB mutant 2H+/K+-exchange was not DCCD-and osmosensitive. Competition between DCCD and osmoshock on inhibition of 2H+/K+-exchange was found. Osmosensitivity of this exchange disappeared in spheroplasts. Osmosensitivity of both 2H+/K+-exchange and the F0F1 and osmoregulation of the F0F1 via F0 and a periplasmic space are postulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F0F1 :

H+-ATPase complex

F0 :

H+-channel, proteolipid

F1 :

H+-ATPase

Trk :

constitutive system for K+ uptake

PV:

periplasmic protein valve

DCCD:

N,N′-dicyclohexylcarbodiimide

CCCP:

carbonylcyanide-m-chlorophenylhydrazone

ΔμH or ΔμK :

transmembrane electrochemical gradient for H+ or K+ respectively

ΔΦ:

membrane potential

upshock or downshock:

increase or decrease of medium osmolarity, respectively

CGSC:

E. coli Genetic Stock Center, Yale University, USA

Literature Cited

  1. Bagramyan KA, Martirosov SM (1989) Formation of an ion transport supercomplex inEscherichia coli. an experimental model of direct transduction of energy. FEBS Lett 246:149–152

    PubMed  Google Scholar 

  2. Bakker EP (1981) The role of ATP and the proton-motive force in potassium transport by theEscherichia coli TrkA system. In: Palmieri F (ed) Vectorial reactions in electron and ion transport in mitochondria and bacteria. Amsterdam; Holland Biomed Press, pp 315–321

    Google Scholar 

  3. Dosch DC, Helmer GL, Sutton RH, Salvacion FF, Epstein W (1991) Genetic analysis of potassium transport loci inEscherichia coli. Evidence for three constitutive systems mediating uptake of potassium. J Bacteriol 173:687–696

    PubMed  Google Scholar 

  4. Dunn S (1978) Identification of the altered subunit in the inactive F1-ATPase of anEscherichia coli uncA mutant. Biochem Biophys Res Commun 82:596–602

    PubMed  Google Scholar 

  5. Durgaryan SS, Martirosov SM (1978a) An electrochemical study of energy-dependent potassium accumulation inE. coli. 1. Two steps in potassium uptake and osmosensitivity. Bioelectrochem Bioenerg 5:554–560

    Google Scholar 

  6. Durgaryan SS, Martirosov SM (1978b) An electrochemical study of energy-dependent potassium accumulation inE. coli. 3. Stoichiometry of H+−K+-exchange sensitive to N,N′-dicyclohexylcarbodiimide. Bioelectrochem Bioenerg 5:567–573

    Google Scholar 

  7. Epstein W (1986) Osmoregulation by potassium transport inEscherichia coli. FEMS Microbiol Rev 39:73–78

    Google Scholar 

  8. Epstein W (1990) Bacterial transport ATPases. In: Krulwich TA (ed) Bacterial energetics. The bacteria, vol. 12. San Diego: Academic Press, pp 87–110

    Google Scholar 

  9. Gibson F (1983) Biochemical and genetic studies on the assembly and function of the F1F0 adenosine triphosphatase ofEscherichia coli. Biochem Soc Trans 11:229–240

    PubMed  Google Scholar 

  10. Gibson F, Cox GB, Downie, JA, Radick J (1978) Partial diploids ofEscherichia coli carrying normal and mutant alleles affecting oxidative phosphorylation. Biochem J 162:665–672

    Google Scholar 

  11. Kaback HR (1971) Bacterial membranes. Methods Enzymol 22:99–120

    Google Scholar 

  12. Martirosov SM (1979) An electrochemical studys of energydependent potassium accumulation inE. coli. 4. Regulation of the H+−K+-pump operation by a periplasmic protein. Bioelectrochem Bioenerg 6:315–321

    Google Scholar 

  13. Martirosov SM, Trchounian AA (1981a) An electrochemical study of energy-dependent potassium accumulation inE. coli. 5. Electrogenic proton pump and lactate secretion. Bioelectrochem Bioenerg 8:25–32

    Google Scholar 

  14. Martirosov SM, Trchounian AA (1981b) An electrochemical study of energy-dependent potassium accumulation inE. coli. 6. Identification of H+−K+-exchanging systems. Bioelectrochem Bioenerg 8:597–603

    Google Scholar 

  15. Martirosov SM, Trchounian AA (1981c) An electrochemical study of energy-dependent potassim accumulation inE. coli. 7. On the structure of H+−K+-exchanging systems. Bioelectrochem Bioenerg 8:605–611

    Google Scholar 

  16. Martirosov SM, Trchounian AA (1982) An electrochemical study of energy-dependent potassium accumulation inE. coli. 9. Reversal of the mechanism exchanging 2H+ for K+ with the coupled synthesis of ATP. Bioelectrochem Bioenerg 9:459–467

    Google Scholar 

  17. Martirosov SM, Trchounian AA (1983) An electrochemical study of energy-dependent potassium accumulation inE. coli. 10. Operation of transport systems exchanging H+ for K+ inunc-mutants. Bioelectrochem Bioenerg 11: 29–36

    Google Scholar 

  18. Martirosov SM, Trchounian AA (1986) An electrochemical study of energy-dependent potassium accumulation inE. coli. 11. TheTrk system in anaerobically and aerobically grown cells. Bioelectrochem Bioenerg 15:417–426

    Google Scholar 

  19. Martirosov SM, Petrosian LS, Trchounian AA, Vardanian AG (1981) An electrochemical study of energy-dependent potassium accumulation inE. coli. 8. Membrane potential (comparison withS. faecalis). Bioelectrochem Bioenerg 8:613–620

    Google Scholar 

  20. Martirosov SM, Ogandjanian ES, Trchounian AA (1988) An electrochemical study of energy-dependent potassium accumulation inE. coli. 12. K+-dependent ATPase activity. Bioelectrochem Bioenerg 19:353–357

    Google Scholar 

  21. Rhoads DB, Epstein W (1977) Energy coupling to net K+ transport inEscherichia coli K12. J Biol Chem 252:1394–1401

    PubMed  Google Scholar 

  22. Rhoads DB, Epstein W (1978) Cation transport inEscherichia coli. 9. Regulation of K+ transport. J Gen Physiol 72:283–295

    PubMed  Google Scholar 

  23. Rhoads DB, Waters FB, Epstein W (1976) Cation transport inEscherichia coli. 8. Potassium transport mutants. J Gen Physiol 67:325–341

    PubMed  Google Scholar 

  24. Sebald W, Hoppe J (1981) On the structure and genetics of the proteolipid subunits of the ATP synthase complex. Curr Top Bioenerg 12:1–64

    Google Scholar 

  25. Trchounian AA, Ogandjanian ES (1989) On the reason of the principle of intramembranal interaction of transport systems in bacteria. Stud Biophys 132:231–234

    Google Scholar 

  26. Trchounian AA, Vassilian AV (1992) Potassium-stimulated N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity in anaerobically grownEscherichia coli. Ann NY Acad Sci 671:490–492

    PubMed  Google Scholar 

  27. Trchounian AA, Ogandjanian ES, Mironova GD (1992) An electrochemical study of energy-dependent potassium accumulation inE. coli. 13. On the interaction of the H+-ATPase complex F0F1 with theTrk proteins in anaerobically grown cells. Bioelectrochem Bioenerg 27:267–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trchounian, A.A., Ogandjanian, E.S. & Vanian, P.A. Osmosensitivity of the 2H+−K+-exchange and the H+-ATPase complex F0F1 in anaerobically grownEscherichia coli . Current Microbiology 29, 187–191 (1994). https://doi.org/10.1007/BF01570152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01570152

Keywords

Navigation