Skip to main content
Log in

Viscosity of nitrous oxide in the critical region

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The gaseous viscosity of nitrous oxide (N2O) was measured in the critical region. The experimental temperature range was between 309.650 and 318.150 K and the pressure range was up to 9.6 MPa. The measurements were obtained with an oscillating-disk viscometer, combined with local determination of the density at the position of the oscillating disk, and they have an estimated accuracy of 0.6 % for viscosity and 0.5 % for gas density. The viscosity of N2O exhibits an anomalous increase near the critical point. The anomalous increase in viscosity was analyzed with the viscosity equation proposed by Basu and Sengers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. N. Naldrett and O. Maass,Can. J. Res. 18B:322 (1940).

    Article  Google Scholar 

  2. A. Michels, A. Botzen, and W. Schuurman,Physica 23:95 (1957).

    Article  ADS  Google Scholar 

  3. J. Kestin, J. H. Whitelaw, and T. F. Zien,Physica 30:161 (1964).

    Article  ADS  Google Scholar 

  4. W. Herreman, A. Laattenist, W. Grevendonk, and A. De Bock,Physics 52:489 (1971).

    Google Scholar 

  5. H. Iwasaki and M. Takahashi,J. Chem. Phys. 74:1930 (1981).

    Article  ADS  Google Scholar 

  6. L. Bruschi and G. Torzo,Phys. Lett. 98A:265 (1983).

    Article  ADS  Google Scholar 

  7. R. F. Berg and M. R. Moldover,J. Chem. Phys. 93:1926 (1990).

    Article  ADS  Google Scholar 

  8. H. J. Strumpf, A. F. Collings, and C. J. Pings,J. Chem. Phys. 60:1309 (1974).

    Article  Google Scholar 

  9. H. Iwasaki and M. Takahashi, inProceedings of the 4th International Conference on High Pressure, Kyoto (1974), p.523.

  10. D. E. Diller,J. Chem. Phys. 42:2089 (1965).

    Article  ADS  Google Scholar 

  11. V. N. Zozulya and Yu. P. Blagoi,Sov. Phys. JETP 39:99 (1974).

    ADS  Google Scholar 

  12. J. H. B. Hoogland and N. J. Trappeniers, inProceedings of the 8th Symposium on Thermophysical Properties, J. V. Sengers, ed. (American Society of Mechanical Engineers, New York, 1982), Vol 1, p. 440.

    Google Scholar 

  13. S. L. Rivkin, A. Ja. Levin, L. B. Izrailevsky, and K. G. Kharitonov, inProceedings of the 8th International Conference on the Properties of Water and Steam, Paris (1975), p. 153.

  14. H. Iwasaki and H. Takahashi,Bull. Chem. Res. Inst. Non-Aqueous Solut. Tohoku Univ. 6:61 (1956).

    Google Scholar 

  15. H. Iwasaki and M. Takahashi,Rev. Phys. Chem. Jpn. 38:18 (1968).

    Google Scholar 

  16. M. Takahashi, S. Takahashi, and H. Iwasaki,J. Chem. Eng. Data 30:10 (1985).

    Article  Google Scholar 

  17. M. Takahashi, C. Yokoyama, and S. Takahashi,J. Chem. Eng. Data 32:98 (1987).

    Article  Google Scholar 

  18. M. Takahashi, C. Yokoyama, and S. Takahashi,Int. Chem. Eng. 27:85 (1987).

    Google Scholar 

  19. M. Takahashi, C. Yokoyama, and S. Takahashi,J. Chem. Eng. Eng. Data 33:267 (1988).

    Article  Google Scholar 

  20. M. Hongo, C. Yokoyama, and S. Takahashi,J. Chem. Eng. Jpn. 21:632 (1988).

    Article  Google Scholar 

  21. A. Kumagai and S. Takahashi,Int. J. Thermophys. 12:105 (1991).

    Article  ADS  Google Scholar 

  22. A. Kumagai, H. Mochida, and S. Takahashi,Int. J. Thermophys. 14:45 (1993).

    Article  ADS  Google Scholar 

  23. W. Fisher,Phys. Rev. 28:73 (1909).

    ADS  Google Scholar 

  24. M. Trautz and F. Kurz,Ann. Phys. 9:981 (1931).

    Article  Google Scholar 

  25. M. Trautz and F. Ruf,Ann. Phys. 20:127 (1934).

    Article  Google Scholar 

  26. H. L. Johnston and H. R. Weimer,J. Am. Chem. Soc. 56:625 (1934).

    Article  Google Scholar 

  27. H. L. Johnston and K. E. McClosky,J. Phys. Chem. 44:1038 (1940).

    Article  Google Scholar 

  28. C. J. G. Raw and C. P. Ellis,J. Chem. Phys. 28:1198 (1958).

    Article  ADS  Google Scholar 

  29. C. P. Ellis and C. J. G. Raw,J. Chem. Phys. 30:574 (1959).

    Article  ADS  Google Scholar 

  30. H. Uchiyama,Chem. Eng. Jpn. 19:342 (1965).

    Google Scholar 

  31. P. K. Chakraborti and P. Gray,Trans. Faraday Soc. 61:2422 (1965).

    Article  Google Scholar 

  32. J. Kestin and W. A. Wakeham,Ber. Bunsenges. Phys. Chem. 83:573 (1979).

    Article  Google Scholar 

  33. E. J. Harris, G. C. Hope, D. W. Gough, and E. B. Smith,J. Chem. Soc. Faraday Trans. 75:892 (1979).

    Article  Google Scholar 

  34. A. A. Clifford, P. Gray, and A. C. Scott,J. Chem. Soc. Faraday Trans. I 77:892 (1979).

    Google Scholar 

  35. J. Kestin and S. T. Ro,Ber. Bunsenges. Phys. Chem. 86:948 (1982).

    Article  Google Scholar 

  36. J. P. Schlumpf, F. Lazarre, and P. Vaillet,J. Chim. Phys. 72:631 (1975).

    Google Scholar 

  37. A. Boushedri, J. Bzowski, J. Kestin, and E. A. Mason,J. Phys. Chem. Ref. Data 16:455 (1987); Erratum,J. Phys. Chem. Ref. Data 17:255 (1988).

    ADS  Google Scholar 

  38. J. Millat, V. Vesovic, and W. A. Wakeham,Int. J. Thermophys. 12:265 (1991).

    Article  ADS  Google Scholar 

  39. M. Takahashi, C. Yokoyama, and S. Takahashi,Trans. JAR 4:25 (1987).

    Google Scholar 

  40. M. Takahashi, C. Yokoyama, and S. Takahashi,Trans. JAR 6:57 (1989).

    Google Scholar 

  41. T. Ejima, Y. Sato, S. Yaegashi, T. Kijima, E. Takeuchi, and K. Tamai,Nippon Kinzoku Gakkaishi 51:328 (1987).

    Google Scholar 

  42. G. F. Newell,J. Appl. Math. Phys. 10:160 (1959).

    Article  MathSciNet  Google Scholar 

  43. H. Iwasaki and J. Kestin,Physica 29:1345 (1963).

    Article  ADS  Google Scholar 

  44. K. Stephan, R. Krauss, and A. Laesecke,J. Phys. Chem. Ref Data 16:993 (1987).

    Article  ADS  Google Scholar 

  45. R. T. Jacobsen and R. B. Stewart,J. Phys. Chem. Ref. Data 2:757 (1973).

    Article  ADS  Google Scholar 

  46. J. V. Sengers, inProceedings of the International School of Physics, “Enrico Fermi,” Course 51. “Critical Phenomena,” M. S. Green, ed. (1971), p. 445.

  47. J. V. Sengers, inTransport Phenomena—1973, J. Kestin, ed. (AIP Conf. Proc. 11, 1973). p. 229.

  48. J. V. Sengers, R. S. Basu, and J. M. H. Levelt Sengers,NASA Contractor Report 3424 (1981).

  49. T. Ohta,Progr. Theor. Phys. 54:1566 (1975).

    Article  ADS  Google Scholar 

  50. T. Ohta and K. Kawasaki,Progr. Theor. Phys. 55:1348 (1976).

    Google Scholar 

  51. J. C. Nieuwoudt and J. V. Sengers,J. Chem. Phys. 90:763 (1990).

    Google Scholar 

  52. R. F. Berg and M. R. Moldover,Phys. Rev. A42:7183 (1990).

    Article  ADS  Google Scholar 

  53. R. Krauss, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephan,Int. J. Thermophys. 14:951 (1993).

    Article  ADS  Google Scholar 

  54. J. M. H. Levelt Sengers, W. L. Greer, and J. V. Sengers,J. Phys. Chem. Ref. Data 5:1 (1976).

    Article  ADS  Google Scholar 

  55. R. S. Basu and J. V. Sengers,J. Heat Trans. Trans. ASME 101:3 (1979).

    Article  Google Scholar 

  56. K. Ohgaki, S. Umezono, and T. Katayama,J. Supercrit. Fluid 3:78 (1990).

    Article  Google Scholar 

  57. G. A. Olchowy and J. V. Sengers,Phys. Rev. Lett. 61:15 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokoyama, C., Takahashi, M. & Takahashi, S. Viscosity of nitrous oxide in the critical region. Int J Thermophys 15, 603–626 (1994). https://doi.org/10.1007/BF01563790

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01563790

Key words

Navigation