Skip to main content
Log in

Electrostatic influence on phytochrome-mediated photomorphogenesis

  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Germination of "Grand Rapids" lettuce seed can be influenced by exposure to artificial electrostatic fields of 75 v cm−1 for periods of 0.2–4 min. Electrostatic treatment can substitute for red light, raising the dark germination level by 10%; germination of light-stimulated seeds is also increased by post-irradiation electrostatic treatment but pre-irradiation treatment represses germination slightly. In contrast to the additive interaction with red light, electric fields markedly antagonize the effects of far-red light. The significance of these results is discussed in relation to other recently reported phytochrome-mediated bioelectric effects.

Zusammenfassung

Die Keimung von "Grand Rapids" Salatsamen kann bei Einwirkung eines künstlichen elektrostatischen Feldes von 75 v cm−1 für die Dauer von 0.2 bis 4 Minuten beeinflusst werden. Die elektrostatische Behandlung kann als Ersatz für rotes Licht dienen, indem sie die Keimungsrate um 10% über den Wert im Dunkeln erhöht. Die Keimung von lichtstimulierten Samen wird durch elektrostatische Nachbehandlung erhöht, dagegen führt die elektrostatische Vorbehandlung zu einer leichten Senkung der Keimung. Im Gegensatz zur additiven Wirkung von rotem Licht, antagoniert die elektrostatische Behandlung die Wirkungen von Infrarot-Licht. Die Bedeutung dieser Ergebnisse wird im Zusammenhang mit anderen kürzlich gefundenen bioelektrischen Wirkungen diskutiert.

Resume

Il est possible d'influencer la germination des graines de laitues "Grand Rapids" en les plaçant durant 0,2 à 4 minutes dans un champ électrostatique artificiel de 75 v cm−1. Le traitement électrostatique peut être substitué à la lumière rouge qui augmente de 10% le pouvoir germinatif par rapport à l'obscurité totale. La germination de graines exposées préalablement à la lumière rouge est également augmentée par un traitement électrostatique. Par contre, l'interversion des deux traitements conduit à une légère diminution du pouvoir germinatif. Au contraire de l'effet cumulatif des actions de la lumière rouge et du champ électrostatique, ce dernier diminue nettement les effets des rayons infra-rouges. On discute la portée de ces résultats à la lumière d'autres effets électrostatiques découverts récemment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BORTHWICK, H.A., HENDRICKS, S.B., TOOLE, E.H. and TOOLE, V.K. (1954): Action of light on lettuce-seed germination. Bot.Gaz., 115: 205–225.

    Google Scholar 

  • CARR, D.J. and REID, D.M. (1966): Actinomycin-D inhibition of phytochrome-mediated responses. Planta (Berl.), 69: 70–78.

    Google Scholar 

  • CHALMERS, A.J. (1957): Atmospheric Electricity. Pergamon Press, Oxford and London.

    Google Scholar 

  • CLARKSON, D.T. (1966): Effect of aluminium on the uptake and metabolism of phosphorous by barley seedlings. Plant Physiol., 41: 165–172.

    Google Scholar 

  • DAVIS, J.B. (1963): Review of scientific information on the effects of ionized air on human beings. Aerospace Med., 34: 35–42.

    PubMed  Google Scholar 

  • DUBROV, A.P., OSTRYAKOV, I.A. and TURKOV, V.D. (1968): Genetic effect of static electricity. Doklady biol. Sci., 178: 29–30. (Translation of: Doklady Akademii Nauk SSSR, 178 : 216–217.)

    Google Scholar 

  • EDWARDS, D.K. (1961): Influence of electrical field on pupation and oviposition in NEPYTIA PHANTASMARIA Stkr. (Lepidoptera: Geometridae). Nature (Lond.), 191: 976, 993.

    Google Scholar 

  • FISCHER, W.H., STURDY, G.E., RYAN, M.E. and PUGH, E.A. (1968): Laboratory studies on fluctuating phenomena. Int. J. Biometeor., 12: 15–19.

    Google Scholar 

  • FURUYA, M. (1968): Biochemistry and physiology of phytochrome.Progress in Phytochemistry, 1: 347–405.

    Google Scholar 

  • HART, F.X. and BACHMAN, C.H. (1968): The effect of air ions on liquid evaporation rates. Int.J.Biometeor., 12: 251–261.

    Google Scholar 

  • HIRSCH, F.G., McGIBONEY, D.R. and HARNISH, T.D. (1968): The psychologic consequences of exposure to high density pulsed electromagnetic energy. Int.J.Biometeor., 12: 263–270.

    Google Scholar 

  • IKUMA, H. and THIMANN, K.V. (1960): Action of gibberellic acid on lettuce seed germination. Plant Physiol., 35: 557–566.

    Google Scholar 

  • IKUMA, H. and THIMANN, K.V. (1964): Analysis of germination processes of lettuce seed by means of temperature and anaerobiosis. Plant Physiol., 39: 756–767.

    Google Scholar 

  • JAFFE, M.J. (1968): Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science, 162: 1016–1017.

    PubMed  Google Scholar 

  • JONES, L.H. (1960): Aluminium uptake and toxicity in plants. Plant and Soil, 13: 297–310.

    Google Scholar 

  • KLEIN, R.M. and EDSALL, P.C. (1966): Substitution of redox chemicals for radiation in phytochrome-mediated photomorphogenesis. Plant Physiol., 41: 949–952.

    Google Scholar 

  • KOTAKA, S. and KRUEGER, A.P. (1967): Studies on the air ion-induced growth increase in higher plants. Adv.Front.Plant Sci., 20: 115 - 208.

    Google Scholar 

  • KOTAKA, S. and KRUEGER, A.P. (1968): Air ion effects on EDTA-induced bleaching in green barley leaves. Int.J.Biometeor., 12: 331–342.

    Google Scholar 

  • KOTAKA, S., KRUEGER, A.P. and ANDRIESE, P.C. (1968): The effect of air ions on light-induced swelling and dark-induced shrinking of isolated chloroplasts. Int.J.Biometeor., 12: 85 - 92.

    Google Scholar 

  • KRUEGER, A.P., ANDRIESE, P.C. and KOTAKA, S. (1968): Small air ions: their effect on blood levels of serotonin in terms of modern physical theory. Int.J.Biometeor., 12: 225–239.

    Google Scholar 

  • KRUEGER, A.P., KOTAKA, S. and ANDRIESE, P.C. (1964): Studies on air ion-enhanced iron chlorosis. I. Active and residual iron. Int.J.Biometeor., 8: 5–16.

    Google Scholar 

  • MAW, M.G. (1961): Behaviour of an insect on an electrically charged surface. Canad.Ent., 93: 391–393.

    Google Scholar 

  • MAW, M.G. (1962): Behaviour of insects in electrostatic fields. Proc.Ent.Soc.Manitoba, 18: 1–7.

    Google Scholar 

  • MAW, M.G. (1967): Periodicities in the influences of air ions on the growth of garden cress. LEPIDIUM SATIVUM L. Canad. J. Plant Sci., 47: 499–505.

    Google Scholar 

  • MIHALYFI, J.P. and SERF, L. (1967): Catalase activity of seeds as affected by electric fields. Acta.Agron.Acad.Sci.Hung., 16: 335–338.

    Google Scholar 

  • MITCHELL, P. (1966): Chemi-osmotic coupling in oxidative and photosynthetic phosphorylation. Biol.Rev., 41: 445–602.

    PubMed  Google Scholar 

  • MURR, L.E. (1964a): The mechanism of plant-cell damage in an electrostatic field. Nature (Lond.), 201: 1305–1306.

    Google Scholar 

  • MURR, L.E. (1964b): A microscopic study of lethal electrotropism in plants. Proc.Penn.Acad.Sci., 38: 7–15.

    Google Scholar 

  • MURR, L.E. (1965): Biophysics of plant growth in an electrostatic field. Nature (Lond.), 206: 467–470.

    Google Scholar 

  • MURR, L.E. (1966): The biophysics of plant growth in a reversed electrostatic field: a comparison with conventional electrostatic and electrokinetic field growth responses. Int.J.Biometeor., 10: 135–146.

    Google Scholar 

  • RASMUSSEN, H.P. (1968): The mode of entry and distribution of aluminium in ZEA MAYS: electron microprobe x-ray analysis. Planta (Berl.), 81: 28–37.

    Google Scholar 

  • ROBERTSON, R.N. (1968): Protons, Electrons, Phosphorylation and Active Transport. Cambridge University Press, Cambridge.

    Google Scholar 

  • SCOTT, B.I.H. (1967): Electric fields in plants. Ann.Rev.Plant Physiol., 18: 409–418.

    Google Scholar 

  • SIDAWAY, G.H. (1966): Influence of electrostatic fields on seed germination. Nature (Lond.), 211: 303.

    Google Scholar 

  • SIDAWAY, G.H. (1967): Germination in electric fields. Spectrum, 33: 3–4

    Google Scholar 

  • SIDAWAY, G.H. (1969): Electrostatic sensitivity of the photo-receptive mechanism in germinating "Grand Rapids" lettuce seed. Planta (Berl.), in press.

  • SIDAWAY, G.H. and ASPREY, G.F. (1968): Influence of electrostatic fields on plant respiration. Int.J.Biometeor., 12: 321–329.

    Google Scholar 

  • SOLLBERGER, A. (1964): Biological Rhythm Research. Elsevier Publ. Co., Amsterdam.

    Google Scholar 

  • TANADA, T. (1968a): Substances essential for a red, far-red light reversible attachment of mung bean root tips to glass. Plant Physiol., 43: 2070–2071.

    Google Scholar 

  • TANADA, T. (1968b): A rapidly reversible electrostatic charge change in mung bean and barley tops. Plant Physiol., 43 (Supplement): S-14.

    Google Scholar 

  • TANADA, T. (1968c): A rapid photoreversible response of barley root tips in presence of 3-indole-acetic acid. Proc.nat.Acad.Sci. (Wash.), 59: 376–380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidaway, G.H. Electrostatic influence on phytochrome-mediated photomorphogenesis. Int J Biometeorol 13, 219–230 (1969). https://doi.org/10.1007/BF01553030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01553030

Keywords

Navigation