Skip to main content
Log in

Analysis of adenosine-mediated pyrimidine starvation using cultured wild-type and mutant mouse T-lymphoma cells

  • Published:
Somatic Cell Genetics

Abstract

Using the S49 T-cell lymphoma system for the study of immunodeficiency diseases, we characterized several variants in purine salvage and transport pathways and studied their responses to the cytotoxic action of adenosine (5–20 μM) in the presence of adenosine deaminase (ADA) inhibitors. Both an adenosine transport deficient mutant and a mutant lacking adenosine (ado) kinase activity are resistant to the cytotoxic effects of adenosine up to 15 μM. Variants lacking hypoxanthine-guanine phosphoribosyl transferase or adenine phosphoribosyltransferase are sensitive to the killing action of adenosine. We monitored the intracellular concentrations of purine and pyrimidine nucleotides, orotate, and PPribose P in mutant and wild-type cells following the addition of adenosine and an ADA inhibitor. We conclude that at low concentrations, adenosine must be phosphorylated to deplete the cell of pyrimidine nucleotides and PPribose P and to promote the accumulation of orotate. These alterations account for one mechanism of adenosine toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Green, H., and Chan, T.-S. (1973).Science 182:836–837.

    PubMed  Google Scholar 

  2. Ishii, K., and Green, H. (1973).J. Cell Sci. 13:429–439.

    PubMed  Google Scholar 

  3. Wolberg, G., Zimmerman, T. P., Hiemstra, K., Winston, M., and Chu, L.-C. (1975).Science 187:957–959.

    PubMed  Google Scholar 

  4. Zenzer, T. V. (1975).Biochim. Biophys. Acta 404:202–213.

    PubMed  Google Scholar 

  5. Ullman, B., Cohen, A., and Martin, D. W., Jr. (1976).Cell 9:205–211.

    PubMed  Google Scholar 

  6. Benke, P. J., and Dittmar, D. (1976).Pediatr. Res. 10:642–646.

    PubMed  Google Scholar 

  7. Snyder, F. F., and Seegmiller, J. E. (1976).FEBS Lett. 66:102–106.

    PubMed  Google Scholar 

  8. Giblett, E. R., Anderson, J. E., Cohen, F., Pollara, B., and Meuwissen, H. J. (1972).Lancet 2:1067–1069.

    PubMed  Google Scholar 

  9. Meuwissen, H. J., Pollara, B., and Pickering, R. J. (1975).J. Pediatr. 86:169–181.

    PubMed  Google Scholar 

  10. Giblett, E. R., Ammann, A. J., Sandman, R., Wara, D. W., and Diamond, L. K. (1975).Lancet 1:1010–1013.

    PubMed  Google Scholar 

  11. Hurwitz, J., Gold, M., and Anders, M. (1964).J. Biol. Chem. 239:3474–3482.

    PubMed  Google Scholar 

  12. Zappia, V., Zydek-Cwick, C. R., and Schlenk, F. (1969).J. Biol. Chem. 244:4499–4509.

    PubMed  Google Scholar 

  13. Pegg, A. E. (1971).FEBS Lett. 16:13–16.

    PubMed  Google Scholar 

  14. Hildeshein, J., Hildeshein, R., and Lederer, E. (1972).Biochimie 54:989–995.

    PubMed  Google Scholar 

  15. Kerr, S. J. (1972). J. Biol. Chem.247:4248–4252.

    PubMed  Google Scholar 

  16. Glick, J. M., Ross, S., and Leboy, P. S. (1975).Nucleic Acids Res. 2:1639–1651.

    PubMed  Google Scholar 

  17. Bourne, H. R., Lichtenstein, L. M., Melmon, K. L., Henney, C. S., Weinstein, Y., and Shearer, G. M. (1974).Science 184:19–28.

    PubMed  Google Scholar 

  18. Horibata, K., and Harris, A. W. (1970).Exp. Cell Res. 60:61–77.

    PubMed  Google Scholar 

  19. Schaeffer, H. J., and Schwender, C. F. (1974).J. Med. Chem. 17:6–8.

    PubMed  Google Scholar 

  20. Woo, P. W. K., Dion, H. W., Lange, S. M., Dahl, L. F., and Durham, L. J. (1974).J. Heterocyc. Chem. 11:641–643.

    Google Scholar 

  21. Kredich, N. M., and Martin, D. W., Jr. (1977).Cell 12:931–938.

    PubMed  Google Scholar 

  22. Green, C., and Martin, D. W., Jr. (1973).Proc. Natl. Acad. Sci. USA 70:3698–3702.

    PubMed  Google Scholar 

  23. Coffino, P., Baumal, R., Laskov, R., and Scharff, M. D. (1972).J. Cell Physiol. 79:429–440.

    PubMed  Google Scholar 

  24. Kornberg, A., Lieberman, I., and Simms, E. S. (1955).J. Biol. Chem. 215:389–402.

    PubMed  Google Scholar 

  25. Cohen, A., Staal, G. E., Ammann, A. J., and Martin, D. W., Jr. (1977).J. Clin. Invest. 60:491–494.

    PubMed  Google Scholar 

  26. Planet, G., and Fox, I. H. (1976).J. Biol. Chem. 251:5839–5844.

    PubMed  Google Scholar 

  27. Remy, C. N., Remy, W. T., and Buchanan, J. M. (1955).J. Biol. Chem. 217:885–895.

    PubMed  Google Scholar 

  28. Fischer, D., Van der Weyden, M. B., Snyderman, R., and Kelley, W. N. (1976).J. Clin. Invest. 58:399–407.

    PubMed  Google Scholar 

  29. Snyder, F. F., Hershfield, M. S., and Seegmiller, J. E. (1977). InPurine Metabolism in Man, II (eds.) Müller, M. M., Kaiser, E., and Seegmiller, J. E., New York, Plenum Press, Volume 76A, 30–39.

    Google Scholar 

  30. Hershfield, M. S., Snyder, F. F., and Seegmiller, J. E. (1977).Science 197:1284–1287.

    PubMed  Google Scholar 

  31. McBurney, M. W., and Whitmore, G. F. (1975).J. Cell Physiol. 85:87–100.

    PubMed  Google Scholar 

  32. May, S. R., Hashmi, S., Miller, O. J., and Krooth, R. S. (1977).Somat. Cell Genet. 3:263–280.

    PubMed  Google Scholar 

  33. Hershko, A., Razin, A., and Mager, J. (1969).Biochim. Biophys. Acta 184:64–76.

    PubMed  Google Scholar 

  34. Fox, I. H., and Kelley, W. N. (1972).J. Biol. Chem. 247:2126–2131.

    PubMed  Google Scholar 

  35. Medrano, L., and Green, H. (1974).Cell 1:23–26.

    Google Scholar 

  36. Debatisse, M., and Buttin, G. (1977).Somat. Cell Genet. 3:513–527.

    PubMed  Google Scholar 

  37. Ullman, G., Gudas, L., Cohen, A., and Martin, D. W., Jr.Cell, in press.

  38. Cohen, A., Hirschhorn, R., Horowitz, S. D., Rubinstein, A., Polmar, S. H., Hong, R., and Martin, D. W., Jr. (1978).Proc. Natl. Acad. Sci. USA 75:472–476.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudas, L.J., Cohen, A., Ullman, B. et al. Analysis of adenosine-mediated pyrimidine starvation using cultured wild-type and mutant mouse T-lymphoma cells. Somat Cell Mol Genet 4, 201–219 (1978). https://doi.org/10.1007/BF01538985

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01538985

Keywords

Navigation