Skip to main content
Log in

On the asymptotic behaviour of the ideal counting function in quadratic number fields

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

LetK be a quadratic number field with discriminantD and denote byF(n) the number of integral ideals with norm equal ton. Forr≥1 the following formula is proved

$$\sum\limits_{n \leqslant x} {F(n)F(n + r) = M_K (r)x + E_K (x,r).} $$

HereM k (r) is an explicitly determined function ofr which depends onK, and for every ε>0 the error term is bounded by\(|E_K (x,r)|<< |D|^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon } x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-\nulldelimiterspace} 6} + \varepsilon } \) uniformly for\(r<< |D|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x^{{5 \mathord{\left/ {\vphantom {5 6}} \right. \kern-\nulldelimiterspace} 6}} \) Moreover,E k (x,r) is small on average, i.e\(\int_X^{2X} {|E_K (x,r)|^2 dx}<< |D|^{4 + \varepsilon } X^{{5 \mathord{\left/ {\vphantom {5 2}} \right. \kern-\nulldelimiterspace} 2} + \varepsilon } \) uniformly for\(r<< |D|X^{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-\nulldelimiterspace} 4}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Estermann, T.: An asymptotic formula in the theory of numbers. Proc. London Math. Soc. (2),34, 280–292 (1932).

    Google Scholar 

  2. Estermann, T.: On Kloosterman's sum. Matematika8, 81–86 (1961).

    Google Scholar 

  3. Heath-Brown, D. R.: The fourth power moment of the Riemann zeta function. Proc. London Math. Soc. (3)38, 385–422 (1979).

    Google Scholar 

  4. Ingham, A. E.: The Distribution of Prime Numbers. Cambridge: Univ. Press. 1932.

    Google Scholar 

  5. Ivic, A.: The Riemann Zeta Function. New York: Wiley. 1985.

    Google Scholar 

  6. Müller, W.: The mean square of the Dedekind zeta function in quadratic number fields. Math. Proc. Camb. Phil. Soc. To appear. (1989).

  7. Smith, R. A.: On ∑r(n)r(n+a). Proc. Nat. Inst. Sci. India. Part A34, 132–137 (1968).

    Google Scholar 

  8. Stadler, A.: An asymptotic formula in algebraic number theory. Acta Arithm. To appear.

  9. Titchmarsh, E. C.: Introduction to the Theory of Fourier Integrals. Oxford: Univ. Press. 1937.

    Google Scholar 

  10. Titchmarsh, E. C.: The Theory of Functions. Oxford: Univ. Press. 1939.

    Google Scholar 

  11. Titchmarsh, E. C.: The Theory of the Riemann Zeta Function. (2nd ed. Revised byD. R. Heath-Brown). Oxoford: Clarendon Press. 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W. On the asymptotic behaviour of the ideal counting function in quadratic number fields. Monatshefte für Mathematik 108, 301–323 (1989). https://doi.org/10.1007/BF01501132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01501132

Keywords

Navigation