Skip to main content
Log in

Evolutionary genetics of the suiformes as reconstructed using mtDNA sequencing

Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

We have amplified and sequnced the entire mitochondrial DNA cytochromeb gene from four species of Suidae: babirusa, warthog, bearded pig, and some specimens belonging to different subspecies and populations of wild and domestic pigs (Sus scrofa). These sequences were aligned with additional mammalian sequences retrieved from the literature and were used to obtain phylogenetic trees of the Suiformes (Artiodactyla). Several species of Carnivora, Perissodactyla. Cetacea, and other Artiodactyla were used as outgroups. Molecular phylogenetic relationships among the Suiformes reflect their current taxonomy: Hippopotamidae, Tayassuidae, and Suidae are separated by deep genetic gaps, and the division of the Suidae into the subfamilies Babyrousinae., Phacochoerinae, and Suinae has strong genetic correlates. Cytochromeb sequences show differences among Asian and Western populations ofSus scrofa, agreeing with other genetic information (karyotypes blood groups, and protein variability). The two Italian subspecies of wild boar have unique mtDNA cytochromeb haplotypes. The evolutionary rates of cytochromeb sequences are different at transitions versus transversions as well as at first, second, and third positions of codons. Therefore, these classes of substitutions reached different levels of mutational saturation. Only transversions and the conservative first and second position substitutions are linearly related to genetic distances among the Suiformes. Therefore, divergence times were computed using unsaturated conserved nucleotide substitutions and calibrated using paleontological divergence times between some Artiodactyla. Transversions apparently evolve at remarkably regular rates in ungulate taxa which have accumulated less than 20% estimated sequence divergence, corresponding to about 40–45 million years of independent evolution. Molecular, information suggests that Hippopotamidae and Tayassuidae are not closely related (as stated by Pickford, 1986, 1989, 1993) and that the origin of babirusa and warthog (about 10–19 and 5–15 million years ago, respectively) is more recent than supported by current evolutionary reconstructions. The inferred origin of bearded pig is about 2.1 million years old, and genetic divergence among differentSus scrofa populations is probably a Pleistocene event. The addition of new sequences of Suiformes does not help in resolving the phylogenetic position ofHippopotamus amphibius, which shows weak but recurrent linkages with the cetacean evolutionary lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Adachi, J. (1995).Modelling of Molecular, Evolution and Maximum Likelihood Inference of Molecular Phylogeny, Thesis, Department of Statistical Science. School of, Mathematical and Physical Sciences, Graduate University for Advanced Studies Tokyo.

    Google Scholar 

  • Adachi, J., and Hasegawa, M. (1995). Phylogeny of whales: Dependence of the inference on species sampling.Mol. Biol. Evol. 12: 177–179.

    PubMed  Google Scholar 

  • Adachi, J., Cao, Y., and Hasegawa, M. (1993). Tenipo and mode of mitochondrial DNA evolution in vertebrates at the amino acid sequence level: Rapid evolution in warm-blooded vertebrates.J. Mol. Evol. 36: 270–281.

    PubMed  Google Scholar 

  • Allard, M. W., Miyamoto, M. M., Jareki, L., Kraus, F., and Tennant, M. R. (1992). DNA systematics and evolution of the artiodactyl family Bovidae.Proc. Natl. Acad. Sci. USA 89: 3972–3976.

    PubMed  Google Scholar 

  • Arnason, U., and Gullberg, A. (1994). Relationships of baleen whales established by cytochromeb gene sequence comparison.Nature 367: 726–728.

    PubMed  Google Scholar 

  • Arnason, U., Bodin, K., Gullberg, A., Ledje, C., and Mouchaty, S. (1995). A molecular view of pinniped relationships with particular emphasis on the true seals.J. Mol. Evol. 40: 78–85.

    PubMed  Google Scholar 

  • Avise, J. C. (1994).Molecular Markers, Natural History and Evolution, Chapman and Hall, New York.

    Google Scholar 

  • Bosma, A. A. (1978). The chromosomal G-banding pattern in the warthog,Phacochoerus aethiopicus (Suidae, Mammalia) and its implications for the systematic position, of the species.Genetica 49: 15–19.

    Google Scholar 

  • Bosma, A. A., and de Haan, N. A. (1981). The karyotype ofBabyrousa babyrussa (Suidae, Mammalia).Acta Zool. Pathol. Antverp.76: 17–21.

    Google Scholar 

  • Bosma., A. A., de Haan, N. A., and McDonald, A. A. (1984). Karyotype variability in the wild boar (Sur scrofa). In:Symposium International sur le Sanglier, F. Spitz and D. Pepin, eds., Toulouse 1984.Colloque de l'INRA 22: 53–56.

  • Brown, W. M. (1985). The mitochondrial genome of animals. In:Molecular Evolutionary Genetics, R. J. MacIntyre, ed., pp. 95–130, Plenum, New York.

    Google Scholar 

  • Cao, Y., Adachi, J., Janke, A., Paabo, S., and Hasegawa, M. (1994). Phylogenetic relationships among eutherian orders estimated from inferred sequences of mitochondrial proteins: Instability of a tree based on a single gene.J. Mol. Evol. 39: 519–527.

    PubMed  Google Scholar 

  • Chikuni, K., Mori, Y., Tabata, T., Saito, M., Monma, M., and Kosugiyama, M. (1995). Molecular phylogeny based on the kappa-casein and cytochromeb sequences in the mammalian suborder Ruminantia.J. Mol. Evol. 41: 859–866.

    PubMed  Google Scholar 

  • Colbert, E. H. (1935). Siwalik mammals in the American Museum of Natural History.Trans. Am. Phil. Soc. (New Ser.)26: 1–401.

    Google Scholar 

  • Cooke, H. B. S., and Wilkinson, A. F. (1978). Suidae and Tayassuidae. In:Evolution of African Mammals, V. J. Maglio and H. B. S. Cooke, eds., pp. 435–482, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • De Beaux, O., and Festa, E. (1927). La ricomparsa del cinghiale nell'Italia settentrionale-occidentale.Mem. Soc. It. Sciencze Nat. Mus. Civ. St. Nat. Milano 3: 263–322.

    Google Scholar 

  • Ducrocq, S. (1994). An Eocene peccary from Thailand and the biogeographical origins of the artiodactyl family Tayassuidae.Palaeontology 37: 765–779.

    Google Scholar 

  • Edwards, S. V., and Wilson, A. C. (1990). Phylogenetically informative length polymorphism and sequence variability in mitochondrial DNA of Australian songbirds, (Pomatostomus)Genetics 126: 695–711.

    PubMed  Google Scholar 

  • Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likelihood approach.J. Mol. Evol. 17: 368–376.

    PubMed  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenetics: An approach using the bootstrap.Evolution 39: 783–791.

    Google Scholar 

  • Felsenstein, J. (1991).PHYLIP: Phylogenetic Inference Package, Version 3.4, Department of Genetics, SK-50, University of Washington, Seattle.

    Google Scholar 

  • Garland, T., Jr., Dickerman, A. W., Janis, C. M., and Jones, J. A. (1993) Phylogenetic analysis of covariance by computer simulation.Syst. Biol. 42: 265–292.

    Google Scholar 

  • Gentry, A. W., and Hooker, J. J. (1988). The phylogeny of Artiodactyla. In:The Phylogeny of the Tetrapods, Vol. 2. Mammals, M. J. Benton, ed., pp. 235–272, Clarendon Press, Oxford.

    Google Scholar 

  • Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. (1983). Origins of whales in epicontinental remnant seas: New evidence from the early Eocene of Pakistan.Science 220: 403–406.

    Google Scholar 

  • Gingerich, P. D., Smith, B. H., and Simons, E. L. (1990). Hind limbs of EoceneBasilosaurus: Evidence of feet in whales.Science 249: 154–157.

    Google Scholar 

  • Graur, D., and Higgins, D. G. (1994). Molecular evidence for the inclusion of cetaceans within the order Artiodactyla.Mol. Biol. Evol. 11: 357–364.

    PubMed  Google Scholar 

  • Groves, C. P. (1981). Ancestors for the pigs: Taxonomy and phylogeny of the genusSus. Tech. Bull. No. 3, Department of Prehistory, Research School of Pacific Studies, Australian National University.

  • Groves, C. P. (1989). Ferat mammals of Mediterranean islands: Documents of early domestication. In:The Walking Larder: Patterns of Domestication, Pastoralism, and Predation, J. Clutton-Brock ed., pp. 46–58, Unwyn Hayman, London.

    Google Scholar 

  • Groves, C. P., and Grubb, P. (1993). The Eurasian suidsSus andBabyrousa. Taxonomy and description. In:Pigs, Peccaries, and Hippos. Status Survey and Conservation Action Plan, W. L. R. Oliver, ed., pp. 107–111, IUCN, Gland, Switzerland.

    Google Scholar 

  • Grubb, P. (1993a). The Afrotropical suids (Phacochoerus, Hylochoerus, and Potamochoerus). Taxonomy and description. In:Pigs, Peccaries, and Hippos, Status Survey and Conservation Action Plan, W. L. R. Oliver, ed., pp. 66–75, IUCN, Gland, Switzerland.

    Google Scholar 

  • Grubb, P. (1993b). Order Artiodactyla. In:Mammals Species of the World. A Taxonomic and Geographic Reference, D. E. Wilson and D. M. Reeder, eds., pp. 377–414, Smithsonian Institution Press, Washington, DC, and London.

    Google Scholar 

  • Heaney, L. R. (1986). Biogeography of mammals in SE Asia: Estimates of rates of colonization, extinction and speciation.Biol. J. Linn. Soc. 28: 127–165.

    Google Scholar 

  • Irwin, D. M., and Arnason, U. (1994). Cytochromeb gene of marine mammals: Phylogeny and evolution.J. Mammal. Evol. 2: 37–55.

    Google Scholar 

  • Irwin, D. M., and Wilson, A. C. (1993). Limitations of molecular methods for establishing the phylogeny of mammals, with special reference to the position of elephants. In:Mammal Phylogeny: Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., pp. 257–267, Springer-Verlag, New York.

    Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochromeb gene of mammals.J. Mol. Evol. 32: 128–144.

    PubMed  Google Scholar 

  • Janis, C. M. (1988). New ideas in ungulate phylogeny and evolution.TREE 3: 291–297.

    Google Scholar 

  • Janke, A., Feldmaier-Fuchs, G., Thomas, W. K., von Haeseler, A., and Pääbo, S. (1994) The marsupial mitochondrial genome and the evolution of placental mammals.Genetics 137: 243–256.

    PubMed  Google Scholar 

  • Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In:Mammalian Protein Metabolism, H. N. Munro, ed., pp. 21–123, Academic Press, New York.

    Google Scholar 

  • Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through, comparative studies of nucleotide sequences.J. Mol. Evol. 16: 111–120.

    PubMed  Google Scholar 

  • Kraus, F., and Miyamoto, M. M. (1991). Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial DNA sequences.Syst. Zool. 40: 117–130.

    Google Scholar 

  • Kumar, S., Tamura, K., and Nei, M. (1993).MEGA: Molecular Evolutionary Genetic Analysis, Version 1.0, Pennsylvania State University, University Park.

    Google Scholar 

  • Kurosawa, Y., and Tanaka, K. (1991). PGD variants in several wild pig populations of East Asia.Anim. Genet. 22: 357–360.

    PubMed  Google Scholar 

  • Kurosawa, Y., Oishi, T., Tanaka, K., and Suzuki, S., (1979). Immunogenetic studies on wild pigs in Japan.Anim. Blood Grps. Biochem. Genet. 10: 227–233.

    Google Scholar 

  • Li, W.-H., Luo, C.-C., and Wu, C.-I. (1985). Evolution of DNA sequences. In:Molecular Evolutionary Genetics, R. J. MacIntyre, ed., pp. 1–94, Plenum, New York.

    Google Scholar 

  • MacDonald, A. A. (19930. The babirusa (Babyrousa babyrussa). In:Pigs, Peccaries and Hippos, Status Survey and Conservation Action Plan, W. L. R. Oliver, ed., pp. 161–171, IUCN, Gland, Switzerland.

    Google Scholar 

  • Milinkovitch, M. C. (1992). DNA-DNA hybridizations support ungulate ancestry of Cetacea.J. Evol. Biol. 5: 149–160.

    Google Scholar 

  • Milinkovitch, M. C., Orti, G., and Meyer, A. (1993). Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences.Nature 361: 346–348.

    PubMed  Google Scholar 

  • Milinkovitch, M. C., Orti, G., and Meyer, A. (1995). Novel phylogeny of whales revisited but not revised.Mol. Biol. Evol. 12: 518–520.

    PubMed  Google Scholar 

  • Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification.Syst. Zool. 35: 230–240.

    Google Scholar 

  • Miyamoto, M. M., Kraus, F., and Ryder, O. A. (1990). Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences.Proc. Natl. Acad. Sci. USA 87: 6127–6131.

    PubMed  Google Scholar 

  • Mortiz, C. (1995). Uses of molecular phylogenies for conservation.Phil. Trans. R. Soc. Lond. B 349: 113–118.

    Google Scholar 

  • Moritz, C., Schneider, C. J., and Wake, D. B. (1992). Evolutionary relationships within theEnsatina escholtzii complex confirm the ring species interpretation.Syst. Biol. 41: 273–291.

    Google Scholar 

  • Oliver, W. L. R. (1993). Introduction. In:Pigs, Peccaries, and Hippos. Status Survey, and Conservation Action Plan, W. L. R. Oliver, ed., pp. X-XIII, IUCN, Gland, Switzerland.

    Google Scholar 

  • Oliver, W. L. R., Cox, C. R., and Groves, C. P. (1993). The Philippine warty pigs. In:Pigs, Peccaries, andHippos. Status Survey and Conservation Action Plan, W. L. R. Oliver, ed., pp. 145–155, IUCN. Gland, Switzerland.

    Google Scholar 

  • Philippe, H., and Douzery, E. (1994). The pitfalls of molecular phylogeny based on four species, as illustrated by the Cetacea/Artiodactyla relationships.,J. Mammal. Evol. 2: 133–152.

    Google Scholar 

  • Pickford, M. (1986). A revision of the Miocene Suidae and Tayassuidae (Artiodactyla, Mammalia) of Africa.Tertiary Res. 7: 1–83.

    Google Scholar 

  • Pickford, M. (1989). Update on hippo originsC. R. Acad. Sci Ser. II: 163–168.

    Google Scholar 

  • Pickford, M. (1993). Oldworld suoid systematics, phylogeny, biogeography and biostratigraphy.Paleontol. Evolutio 26–27: 237–269.

    Google Scholar 

  • Randi, E., Apollonio, M., and Toso, S. (1989). The systematics of some Italian populations of wild boar (Sus scrofa): A craniometric and electrophoretic analysis.Z. Säugetierk,54: 40–56.

    Google Scholar 

  • Ruvolo, M., Zehr, S., von Dornum, M., Pan, D., Chang, B., and Lin, J. (1993). Mitochondrial COII sequences and modern human originsMol. Biol. Evol. 10: 1115–1135.

    PubMed  Google Scholar 

  • Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol. 4: 406–425.

    PubMed  Google Scholar 

  • Scott, K. M., and Janis, C. M. (1987). Phylogenetic relationships of the Cervidae, and the case for a superfamily “Cervoidea,” In:Biology and Management of the Cervidae, C. M. Wemmer, ed., pp. 3–20, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Stanley, H. F., Kadwell, M., and Wheeler, J. C. (1994). Molecular evolution of the Camelidae: A mitochondrial DNA study.Proc. R. Soc. London B256: 1–6.

    Google Scholar 

  • Steel, M. A., Lockhart, P. J., and Penny, D. (1993). Comidence in evolutionary trees from biological sequence data.Nature 364: 440–442.

    PubMed  Google Scholar 

  • Swofford, D. L. (1993).PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1, Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Swofford, D. L., and Olsen, G. J. (1990). Phylogeny reconstruction. In:Molecular Systematics, D. M. Hillis and C. H. Moritz, eds., pp. 411–501, Sinauer, Sunderland, MA.

    Google Scholar 

  • Thenuis, E. (1970). Zur evolution und verbreitungsgeschichte der Suidae (Artiodactyla, Mammalia).Z. Säugetierk.35: 321–342.

    Google Scholar 

  • Watanabe, T., Hayashi, Y., Kimura, J., Yasuda, Y., Saitou, N., Tomita, T., and Ogasawara, N. (1986). Pig mitochondrial DNA: Polymorphism, restriction map orientation., and sequence data.Biochem. Genet. 24: 385–396.

    PubMed  Google Scholar 

  • Wills, C. (1995). When did Eve live? An evolutionary detective story.Evolution 49: 593–607.

    Google Scholar 

  • Xu, X., and Arnason, U. (1994). The complete mitochondrial DNA sequence of the horse,Equus caballus: Extensive heteroplasmy of the control region.Gene 148: 357–362.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Randi, E., Lucchini, V. & Diong, C.H. Evolutionary genetics of the suiformes as reconstructed using mtDNA sequencing. J Mammal Evol 3, 163–194 (1996). https://doi.org/10.1007/BF01454360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454360

Key Words

Navigation