Skip to main content
Log in

Approximation of the efficient point set by perturbation of the ordering cone

  • Published:
Zeitschrift für Operations Research Aims and scope Submit manuscript

Abstract

A vector optimization problem is given by a feasible setZ⊑ℝn, a vector-valued objective functionf: ℝn→ℝl, and an ordering coneCℝℝl. We perturb the ordering cone in such a way that the weakly efficient points of the “perturbed” vector optimization problem given byZ, f, and the perturbed cone are efficient points of the original problem. Especially this means that scalarization methods, which compute in general only weakly efficient points, determine efficient points of the original problem, when they were applied to the perturbed problem.

It turns out that the efficient points are the limits of weakly efficient points of the perturbed problems, letting the perturbation tend to zero. On the basis of this, a reference point algorithm is formulated. Finally, we apply this algorithm to a structural optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arrow KJ, Barankin EW, Blackwell D (1953) Admissible Points of Convex Sets. In: Kuhn HW, Tucker AW (eds) Contribution to the Theory of Games, II. Princeton University Press, Princeton, NJ, pp 87–91

    Google Scholar 

  2. Benson B (1979) An Improved Definition of Proper Efficiency for Vector Maximization with Respect to Cones. J Math Anal Appl 71:232–241

    Google Scholar 

  3. Bernau H (1987) Interactive Methods for Vector Optimization. In: Brosowski B, Martensen E (eds) Optimization in Mathematical Physics. Lang Verlag, Frankfurt, pp 21–36

    Google Scholar 

  4. Bitran GR, Magnanti TL (1979) The Structure of Admissible Points with Respect to Cone Dominance. J Optim Theory Appl 29:573–614

    Google Scholar 

  5. Brosowski B (1985) Application of Parametric Programming to the Optimal Design of Stiffened Plates. In: Brosowski B, Deutsch F (eds) Parametric Optimization and Approximation. Birkhäuser, Basel Boston Stuttgart, pp 47–69

    Google Scholar 

  6. Brosowski B (1989) A Recursive Procedure for the Solution of Linear and Nonlinear Vector Optimization Problems. In: Eschenauer HA, Thierauf G (eds) Discretization Methods and Structural Optimization — Procedures and Applications. Springer, Berlin Heidelberg New York, pp 95–101

    Google Scholar 

  7. Brosowski B, Conci A (1983) On Vector Optimization and Parametric Programming. Segundas Jornados Latino Americans de Matematica Aplicada 2:483–495

    Google Scholar 

  8. Brosowski B, Conci A (1983) On the Optimal Design of Stiffened Plates. Anais VII. Congresso Brasileiro de Engenharia Mecanica, vol D, pp 169–178

    Google Scholar 

  9. Guddat J, Guerra Vasquez F (1987) Multiobjective Optimization Using Pivoting and Continuation Methods. Archiwum Automatyki I Telemechaniki 4:301–317

    Google Scholar 

  10. Hartley R (1978) On Cone-efficiency, Cone-convexity, and Cone-compactness. SIAM J Appl Math 34:211–222

    Google Scholar 

  11. Helbig J (1989) Stability and Stability Sets in Nonlinear Vector Optimization. Preprint

  12. Helbig S (1990) An Algorithm for Quadratic Vector Optimization Problems. Z Angew Mathe Mech 70:T751-T753

    Google Scholar 

  13. Helbig S (1990) An Interactive Algorithm for Nonlinear Vector Optimization. Appl Math Optim 22:147–151

    Google Scholar 

  14. Helbig S (1990) On some Interactive Methods for Quadratic Vector Optimization Problems. Preprint, University of Frankfurt

  15. Helbig S (1990) Scalarization in Vector Optimization by Cone Perturbation. Talk at the “Operations Research 1990”, Wien, Austria, 28.–31. 8. 1990

  16. Henig MI (1982) Proper Efficiency with Respect to Cones. J Optim Theory Appl 36:387–407

    Google Scholar 

  17. Henig MI (1982) A Cone Separation Theorem. J Optim Theory Appl 36:451–455

    Google Scholar 

  18. Jahn J (1988) A Method of Reference Point Approximation in Vector Optimization. O R Proceedings 87:576–587

    Google Scholar 

  19. Jahn J (1989) An Interactive Method of Reference Point Approximation in Vector Optimization. Talk at the “14th Symposium on Operations Reserach”, Ulm, Germany, 6.–8. 9. 1989

  20. Lawo M, Murray NW, Aust FIE, Thierauf G (1978) Optimization of Stiffened Plates. Civil Engineering Transactions, pp 13–16

  21. Nožička F, Guddat J, Hollatz H, Bank B (1974) Theorie der linearen parametrischen Optimierung. Akademie-Verlag, Berlin

    Google Scholar 

  22. Pascoletti A, Serafini P (1984) Scalarizing Vector Optimization Problems. J Optim Theory Appl 42:499–524

    Google Scholar 

  23. Rockafellar RT (1970) Convex Analysis. Princeton Univ Press, Princeton

    Google Scholar 

  24. Weidner P (1990) An Approach to Different Scalarizations in Vector Optimization. Wissenschaftliche Zeitschr der TH Ilmenau 36:103–110

    Google Scholar 

  25. Weidner P (1990) On Proper Efficiency in the Sense of Geoffrion. Talk at the XV. International Conference “Mathematical Optimization — Theory and Applications”, Eisenach, Germany, 10.–14.12. 1990

  26. Wieland U (1991) Anwendung eines Vektoroptimierungsproblems auf den optimalen Entwurf versteifter Platten. Diplom-Thesis University of Frankfurt

  27. Wierzbicki AP (1986) On the Completeness and Constructiveness of Parameteric Characterizations to Vector Optimization Problems. OR Spektrum 8:73–87

    Google Scholar 

  28. Wolf K (1988) Sensitivitätsanalyse bezüglich der Änderung der Dominanzsstruktur bei linearen Vektormaximumproblemen. Dissertation, FU Hagen

  29. Yu PL (1974) Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multiobjectives. J Optim Theory Appl 14:319–377

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helbig, S. Approximation of the efficient point set by perturbation of the ordering cone. ZOR - Methods and Models of Operations Research 35, 197–220 (1991). https://doi.org/10.1007/BF01415907

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01415907

Keywords

Navigation