Skip to main content
Log in

Computer simulation of macromolecular materials

  • Leading Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Computer simulation of model systems with Monte Carlo methods enables the detailed study of structure and thermodynamic properties of these systems and thus constitutes a link between analytic theory and experiment. Typical applications that are discussed include polymer blends, dynamics of local motions in polymer melts, and the adsorption of polymers on walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binder K, Heermann DW (1988) Monte Carlo Simmulation in Statistical Physics — Introduction. Springer Berlin Heidelberg New York

    Google Scholar 

  2. Heermann DW (1986) An Introduction to Computer Simulation Methods in Theoretical Physics. Springer Berlin Heidelberg New York

    Google Scholar 

  3. Binder K (ed) (1986) Monte Carlo Methods in Statistical Physics. 2nd ed, Springer Berlin Heidelberg New York

    Google Scholar 

  4. Binder K (ed) (1987) Applications of the Monte Carlo Method in Statistical Physics. 2nd ed, Springer Berlin Heidelberg New York

    Google Scholar 

  5. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca New York

    Google Scholar 

  6. Huggins MJ (1942) J Am Chem Soc 64:1712; (1941) J Chem Phys 9:440

    Google Scholar 

  7. Koningsveld R, Kleintjens A, Nies E (1987) Croat Chim Acta 60:53

    Google Scholar 

  8. Snyder H, Reich S, Meakin P (1983) Macromolecules 16:757

    Google Scholar 

  9. Hashimoto T (1987) In: Ottenbrite RM, Utracki LA, Inoue S (eds) Current Topics in Polymer Science. Vol II, Hanser, Munich, Vienna, New York, p 199

    Google Scholar 

  10. Schwahn D, Mortensen K, Yee-Madeira H (1987) Phys Rev Lett 58:1544

    PubMed  Google Scholar 

  11. De Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University, Ithaca, New York

    Google Scholar 

  12. Herkt-Maetzky C, Schelten J (1983) Phys Rev Lett 51:896

    Google Scholar 

  13. Sariban A, Binder K (1987) J Chem Phys 86:5859

    Google Scholar 

  14. Sariban A, Binder K (1988) Macromolecules 21:711

    Google Scholar 

  15. Rouse PE (1953) J Chem Phys 21:127

    Google Scholar 

  16. Baumgärtner A (1987) In: Ref [4], Chapter 5

    Google Scholar 

  17. Kremer A, Binder K (1988) Computer Phys Repts 7:259

    Google Scholar 

  18. Fisher ME, Barber MN (1972) Phys Rev Lett 28:1516

    Google Scholar 

  19. Binder K (1981) Z Phys B43:119

    Google Scholar 

  20. Binder K (1987) Ferroelectrics 73:43

    Google Scholar 

  21. Stanley HE (1971) An Introductin to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford

    Google Scholar 

  22. Fisher ME (1974) Rev Mod Phys 46:597

    Google Scholar 

  23. Le Guillou JC, Zinn-Justin J (1980) Phys Rev B21:3976

    Google Scholar 

  24. Beysens D (1982) In: Levy M, Le Guillou JC, Zinn-Justin J (eds) Phase Transitioins, Cargese 1980. Plenum Press, New York, p 25

    Google Scholar 

  25. Guggenheim EA (1945) Proc R Soc Lond A183:201, 231

    Google Scholar 

  26. Bates FS, Muthukumar M, Wignall GD, Fetter LJ (1988) J Chem Phys

  27. De Gennes PG (1971) J Chem Phys 55:572

    Google Scholar 

  28. De Gennes PG (1976) Macromolecules 9:587

    Google Scholar 

  29. De Gennes PG (1980) J Chem Phys 72:4756

    Google Scholar 

  30. Edwards SF (1967) Proc Phys Soc 91:513

    Google Scholar 

  31. Doi M, Edwards SF (1978) J Chem Soc Faraday Trans (2)74:1789, 1802, 1818

    Google Scholar 

  32. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford

    Google Scholar 

  33. Baumgärtner A, Binder K (1981) J Chem Phys 75:2994

    Google Scholar 

  34. Richter D, Baumgärtner A, Binder K, Ewen B, Hayter JB (1981) Phys Rev Lett 47:109

    Google Scholar 

  35. Richter D, Baumgärtner A, Binder K, Ewen B, Hayter JB (1982) Phys Rev Lett 48:1695

    Google Scholar 

  36. Ferry JD (1980) Viscoelastic properties of polymers. J Wiley, New York

    Google Scholar 

  37. Graessley WW (1980) J Polym Sci, Polym Phys Ed 18:28

    Google Scholar 

  38. Bishop M, Ceperley D, Frisch HL, Kalos MH (1982) J Chem Phys 76:1557

    Google Scholar 

  39. Kremer K (1983) Macromolecules 16:1632

    Google Scholar 

  40. Baumgärtner A (1983) Faraday Symp Chem Soc 18:221

    Google Scholar 

  41. Kolinski A, Skolnick J, Yaris R (1987) J Chem Phys 86:1567, 7164

    Google Scholar 

  42. Kremer K, Grest GS, Carmesin I (1988) Phys Rev Lett 61:566

    PubMed  Google Scholar 

  43. Grest GS, Kremer K (1986) Phys Rev A33:3628

    Google Scholar 

  44. Eisenriegler E, Kremer K, Binder K (1982) J Chem Phys 77:6296

    Google Scholar 

  45. Nienhuis B (1982) Phys Rev Lett 49:1062

    Google Scholar 

  46. Kremer K, Grest GS, Witten TA (1987) Macromolecules 20:1376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited talk at the Tagung der Deutschen Physikalischen Gesellschaft (DPG), Fachausschuß Polymerphysik, Hamburg, March 14–16, 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binder, K. Computer simulation of macromolecular materials. Colloid & Polymer Sci 266, 871–885 (1988). https://doi.org/10.1007/BF01410842

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01410842

Key words

Navigation