Skip to main content
Log in

Cerebral glucose and energy metabolism, cerebral oxygen consumption, and blood flow in arterial hypoxaemia

  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Summary

The influence of moderately reduced arterial oxygen tension (aPO2 of about 45 Torr) on the metabolism and the blood flow of the brain was tested in 20 anaesthetized, artificially ventilated normotensive, normocapnic beagle dogs. It is demonstrated that the decrease in systemic oxygen delivery to the brain is countered by an appropriate increase in flow (CBF being 60.3 ml/100 g min at normoxia and 84.5 mg/100 g min m hypoxaemia) which maintained the cerebral oxygen consumption unchanged (CMRO2 3.80 versus 3.32 ml/100 g min). The cortical tissue content of energy-rich phosphates such as ATP, ADP, AMP, and phosphocreatine was also found to be unaltered. Neuropathological examinations excluded any hypoxic cell damage. This reactive vasodilatory reaction of the cerebral vessels is apparently a sensitive regulatory process which protects the brain against marked oxygen lack. However, a normal carbohydrate metabolism is not restored by this cerebrovascular mechanism. For, significantly increased CMRlactate (0.32 versus 1.46 ml/100 g min) indicated raised cerebral glycolysis, and the tissue metabolites of glucose suggested an increased glycolytic flux in the brain. It is concluded that in moderate arterial hypoxaemia, which is not uncommon in clinical practice, cerebral blood flow plays an effective homeostatic role in preventing a disturbance of the energy metabolism of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson, D. E., The energy charge of the adenylate pool as a regulatory parameter: Interaction with feedback modifers. Biochemistry7 (1968), 4030–4034.

    PubMed  Google Scholar 

  2. Bachelard, H. S., Lewis, L. D., Ponten, U., Siesjö, B. K., Mechanisms activating glycolysis in the brain in arterial hypoxia. J. Neurochem.22 (1974), 395–401.

    PubMed  Google Scholar 

  3. Bernsmeier, A., Siemons, K., Die Messung der Hirndurchblutung mit der Stickoxydulmethode. Arch. ges. Physiol.258 (1953), 149–162.

    Google Scholar 

  4. Berlet, H. H., Hypoxic survival of normoglycaemic young and adult mice in relation to cerebral metabolic rates. J. Neurochem.26 (1976), 1267–1274.

    PubMed  Google Scholar 

  5. Borgström, L., Johannsson, H., Siesjö, B. B., The relationship between arterial PO2 and cerebral blood flow in hypoxic hypoxia. Acta physiol. scand.93 (1975), 423–432.

    PubMed  Google Scholar 

  6. Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M., Wollman, H., Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. Appl. Physiol.23 (1967), 183–189.

    PubMed  Google Scholar 

  7. Courtice, F. C., The effect of oxygen lack on the cerebral circulation. J. Physiol.100 (1941), 198–211.

    Google Scholar 

  8. Davis, J. N., Carlsson, A., Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanaesthetized rat brain. J. Neurochem.20 (1973), 913–915.

    PubMed  Google Scholar 

  9. Gibson, G. E., Blass, J. P., Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycaemia. J. Neurochem.27 (1976), 37–42.

    PubMed  Google Scholar 

  10. Hamer, J., Hoyer, S., Alberti, E., Weinhardt, F., Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxaemia. Acta Neurochir. (Wien)33 (1976), 141–150.

    Google Scholar 

  11. Johannsson, H., Siesjö, B. K., Cerebral blood flow and oxygen consumption in the rat in hypoxic hypoxia. Acta physiol. scand.93 (1975), 269–276.

    PubMed  Google Scholar 

  12. Kaasik, A. E., Nilsson, L., Siesjö, B. K., The effect of asphyxia upon the lactate, pyruvate, and bicarbonate concentrations of brain tissue and cisternal CSF, and upon the tissue concentrations of phosphocreatine and adenine nucleotides in anesthetized rats. Acta physiol. scand.78 (1970), 433–447.

    PubMed  Google Scholar 

  13. Kety, S. S., Schmidt, C. F., The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men. J. Clin. Invest.27 (1948), 484–492.

    Google Scholar 

  14. Kogure, K., Scheinberg, P., Reinmuth, O. M., Fujishima, M., Busto, R., Mechanisms of cerebral vasodilatation in hypoxia. J. Appl. Physiol.29 (1970), 223–229.

    PubMed  Google Scholar 

  15. Lowry, O. H., Passonneau, J. V., The relationship between substrates and enzymes of glycolysis in brain. J. biol. Chem.239 (1964), 31–42.

    PubMed  Google Scholar 

  16. MacDowall, D. G., Interrelationship between blood oxygen tension and cerebral blood flow. In: Oxygen Measurements in Blood and Tissues, pp. 205–214 (Payne, J. D., and Hill, D. W., eds.). London: Churchill. 1966.

    Google Scholar 

  17. MacMillan, V., Siesjö, B. K., Brain energy metabolism in hypoxaemia. Scand. J. clin. Lab. Invest.30 (1972), 127–136.

    PubMed  Google Scholar 

  18. Meyer, J. S., Gotoh, F., Ebihara, S., Tomita, M., Effects of anoxia on cerebral metabolism and electrolytes in man. Neurology (Minn.)15 (1965), 892–901.

    Google Scholar 

  19. Noell, W., Schneider, M., über die Durchblutung und die Sauerstoffversorgung des Gehirns im akuten Sauerstoffmangel. I. Die Gehirndurchblutung. Pflügers Arch. ges. Physiol.246 (1942), 181–249.

    Google Scholar 

  20. Norberg, K., Siesjö, B. K., Cerebral metabolism in hypoxic hypoxia. I: Pattern of activation of glycolysis, a re-evaluation. Brain Res.86 (1975), 31–44.

    PubMed  Google Scholar 

  21. Reinhard, K. R., Miller, M. E., Evans, H. E., The craniovertebral veins and sinuses of the dog. Amer. J. Anat.111 (1962), 67–87.

    PubMed  Google Scholar 

  22. Siesjö, B. K., Nilsson, L., The influence of arterial hypoxaemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain. Scand. J. clin. Lab. Invest.27 (1971), 83–95.

    PubMed  Google Scholar 

  23. Siesjö, B. K., Johannsson, H., Norberg, K., Salford, L., Brain function, metabolism and blood flow in moderate and severe arterial hypoxia. In: Brain Work, Alfred Benzon Symposium VIII, 101–119. Munksgaard 1975.

  24. Shimojyo, S., Scheinberg, P., Kogure, K., Reinmuth, O. M., The effects of graded hypoxia upon transient cerebral blood flow and oxygen consumption. Neurology (Minn.)18 (1968), 127–133.

    Google Scholar 

  25. Weinhardt, F., Quadbeck, G., Hoyer, S., Quantitative Bestimmung von Blutgasvolumina mit Hilfe der Gaschromatographie. Z. prakt. AnÄsth.6 (1972), 337–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamer, J., Wiedemann, K., Berlet, H. et al. Cerebral glucose and energy metabolism, cerebral oxygen consumption, and blood flow in arterial hypoxaemia. Acta neurochir 44, 151–160 (1978). https://doi.org/10.1007/BF01402057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01402057

Key words

Navigation