Skip to main content
Log in

Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

An iteration based upon the Tchebychev polynomials in the complex plane can be used to solve large sparse nonsymmetric linear systems whose eigenvalues lie in the right half plane. The iteration depends upon two parameters which can be chosen from knowledge of the convex hull of the spectrum of the linear operator. This paper deals with a procedure based upon the power method for dynamically estimating the convex hull of the spectrum. The stability of the procedure is discussed in terms of the field of values of the operator. Results show the adaptive procedure to be an effective method of determining parameters. The Tchebychev iteration compares favorably with several competing iterative methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G., Maclane, S.: A survey of modern algebra. New York: MacMillan 1953

    Google Scholar 

  2. Carre', B.A.: The determination of the optimum acceleration factor for successive overrelaxation. Comput. J.4, 73–78 (1961)

    Google Scholar 

  3. Concus, P., Golub, G.H.: A generalized conjugate gradient method for non-symmetric systems of linear equations. Proc. Second International Symposium on Computing Methods in Applied Sciences and Engineering. Versailles, France, December 1975

  4. Diamond, M.A.: An economical algorithm for the solution of elliptic difference equations independent of user-supplied parameters. Ph.D. Dissertation, Department of Computer Science, University of Ill., 1972

  5. Dunford, N., Schwartz, J.L.: Linear operators. New York: Interscience 1958

    Google Scholar 

  6. Engeli, M., Ginsburg, T.H., Rutishauser, H., Stiefel, E.L.: Refined iterative methods for computation of the solution and eigenvalues of self-adjoint boundary value problems. Mitteilungen aus dem Institut für Angewandte Mathematik, No.8, pp. 1–78, 1959

    Google Scholar 

  7. Faddeev, D.K., Faddeeva, U.N.: Computational methods of linear algebra. San Francisco: Freeman 1963

    Google Scholar 

  8. Golub, G.H., Varga, R.S.: Chebyshev semi-iterative methods, successive over relaxation iterative methods and second order Richardson iterative methods. Numer. Math.3, 147 (1961)

    Google Scholar 

  9. Golub, G., Kahan, W.: Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal.2, 205–224 (1965)

    Google Scholar 

  10. Hageman, L.A., Kellogg, R.B.: Estimating optimum overrelaxation parameters. Math Comput.22, 60–68 (1968)

    Google Scholar 

  11. Hageman, L.A.: The estimation of acceleration parameters for the Chebyshev polynomial and the successive over relaxation iteration methods. AEC Research and Development Report WAPD-TM-1038, June 1972

  12. Henrici, P.: Bounds for iterates, inverses, spectral varation and fields of values of non-normal matricies. Numer. Math.4, 24–40 (1962)

    Google Scholar 

  13. Hestenes, M.R., Stiefel, E.L.: Methods of conjugate gradients for solving linear systems. N.B.S.J. Res.49, 409–436 (1952)

    Google Scholar 

  14. Householder, A.S.: The theory of Matricies in numerical analysis, pp. 37–57. New York: Blaisdell 1964

    Google Scholar 

  15. Kershaw, D.S.: The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Lawrence Livermore Lab Report, UCRL-78333, Livermore, California, 1976

  16. Kincaid, D.R.: On complex second-degree iterative methods. SIAM J. Numer. Anal.II, No. 2, 211–218 (1974)

    Google Scholar 

  17. Kincaid, D.R.: Numerical results of the application of complex second-degree and semi-iterative methods. Center for Numerical Analysis Report, CNA-90, Oct. 1974

  18. Kjellberg, G.: On the convergence of successive over relaxation applied to a class of linear systems of equations with complex eigenvalues. Ericsson Technics2, 245–258 (1958)

    Google Scholar 

  19. Manteuffel, T.A.: An iterative method for solving nonsymmetric linear systems with dynamic estimation of parameters. Digital Computer Laboratory Reports, Rep. UIUCDS-R-75-758, University of Ill., Oct. 1975

  20. Manteuffel, T.A.: The Tchebychev iteration for nonsymmetric linear systems. Numer. Math.28, 307–327 (1977)

    Google Scholar 

  21. Meijerink, J.A., van der Vorst, H.A.: An iterative solution method for linear systems of which the coefficient matrix is a symmetricM-matrix. Math. Comput.31, 148–162 (1977)

    Google Scholar 

  22. Paige, C.C.: Bidiagonalization of matrices and solution of linear equations. SIAM J. Numer. Anal.11, 197 (1974)

    Google Scholar 

  23. Reid, J.K.: A method for finding the optimum successive overrelaxation parameter. Comput. J.9, 200–204 (1966)

    Google Scholar 

  24. Stewart, G.W.: Introduction to matrix computation. New York: Academic Press 1973

    Google Scholar 

  25. Stiefel, E.L.: Kernel polynomials in linear algebra and their applications. U.S. N.B.S. Applied Math Series49, 1–22 (1958)

    Google Scholar 

  26. Stone H.L.: Iterative solutions of implicit approximations of multidimensional partial differential equations. SIAM J. Numer. Anal.5, 530 (1968)

    Google Scholar 

  27. Taussky, O.: Some topics concerning bounds for eigenvalues of finite matrices. In: Survey of numerical analysis (J. Todd, ed.), Ch. 8, pp. 279–297. New York: McGraw Hill 1962

    Google Scholar 

  28. Varga, R.S.: A comparison of successive over relaxation and semi-iterative methods using Chebyshev polynomials. SIAM J. Numer. Anal.5, 39–46 (1957)

    Google Scholar 

  29. Varga, R.S.: Matrix iterative analysis. Englewood Cliffs, N.J.: Prentice-Hall 1962

    Google Scholar 

  30. Wachspress, E.L.: Iterative solution of elliptic systems, pp. 157–158. Englewood Cliffs, N.J.: Prentice-Hall 1962

    Google Scholar 

  31. Widland, O.: A Lanczos method for a class of non-hermitian systems of linear equations. Tech. Rep., Courant Institute, New York (to appear)

  32. Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965

    Google Scholar 

  33. Wrigley, H.E.: Accelerating the Jacobi method for solving simultaneous equations by Chebyshev extrapolation when the eigenvalues of the iteration matrix are complex.6, 169–176 (1963)

  34. Young, D.M., Edison, H.D.: On the determination of the optimum relaxation factor for the SOR method when the eigenvalues of the Jacobi method are complex. Center for Numerical Analysis Report, CNA-1, September 1970

  35. Young, D.: Iterative solution of large linear systems, pp. 191–200. New York-London: Academic Press 1971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by the National Science Foundation under grants NSF GJ-36393 and DCR 74-23679 (NSF)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manteuffel, T.A. Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration. Numer. Math. 31, 183–208 (1978). https://doi.org/10.1007/BF01397475

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01397475

Subject Classifications

Navigation