Skip to main content
Log in

Autour de la conjecture de L. Markus sur les variétés affines

  • Published:
Inventiones mathematicae Aims and scope

Summary

For any subgroupG of (ℝn), we introduce some integer discGn called thediscompacity ofG. This number measures to what extent the closure ofG is not compact. The Markus' conjecture says that a compact affinely flat unimodular manifold is complete. Our main result (called the ≪discompact theorem≫) is that this conjecture is true under the assumption that the linear holonomy i.e. the parallel transport has discompacity ≦1. Because discSO(n−1, 1)=1, this ensures that a compact flat Lorentz manifoldM is geodesically complete. Hence, by a previous result of W. Goldman and Y. Kamishima [GK], such aM is, up to finite covering, a solvmanifold. This achieves the proof of a Bieberbach's theorem for compact Lorentz flat manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  • [A] Arnold, V.: Les méthodes mathématiques de la mécanique classique. Moscow: Edition MIR 1976

    Google Scholar 

  • [Be] Benzecri, J.P.: Variétés localement affines et projectives. Bull. Soc. Math. France88, 229–332 (1960)

    Google Scholar 

  • [Bu] Buser, P.: A geometric proof of Bieberbach's theorems on crystallographic groups. L'Enseignement Math.31, 137–145 (1985)

    Google Scholar 

  • [CG] Conze, J.P., Guivarch, Y.: Remarques sur la distalité dans les espaces vectoriels. C. R. Acad. Sci. Paris278, 1083–1086 (1974)

    Google Scholar 

  • [D'A] D'Ambra, G.: Isometry groups of Lorentz manifolds. Invent. Math.92, 555–565 (1988)

    Google Scholar 

  • [F1] Fried, D.: Closed similarity manifolds. Comment. Math. Helv.55, 576–582 (1980)

    Google Scholar 

  • [F2] Fried, D.: Distality, completeness and affine structures. J. Diff. Geom.24, 265–273 (1986)

    Google Scholar 

  • [F3] Fried, D.: Flat spacetimes. J. Diff. Geom.26, 385–396 (1987)

    Google Scholar 

  • [F4] Fried, D.: Polynomials on affine manifolds. Trans. Am. Math. Soc.274, 709–719 (1982)

    Google Scholar 

  • [FG] Fried, D., Goldman, W.: Three-dimensional affine crystallographic groups. Adv. Math.47, 1–49 (1983)

    Google Scholar 

  • [FGH] Fried, D., Goldman, W., Hirsch, M.: Affine manifolds with nilpotent holonomy. Comment. Math. Helv.56, 487–523 (1981)

    Google Scholar 

  • [G1] Goldman, W.: Two examples of affine manifolds. Pac. J. Math.94, 327–330 (1981)

    Google Scholar 

  • [G2] Goldman, W.: Projective structures with fuchsian holonomy. J. Diff. Geom.25, 297–326 (1987)

    Google Scholar 

  • [GH1] Goldman, W., Hirsch, M.: The radiance obstruction and parallel forms on affine manifolds. Trans. Am. Math. Soc.286, 629–649 (1984)

    Google Scholar 

  • [GH2] Goldman, W., Hirsch, M.: Affine manifolds and orbits of algebraic groups. Trans. Am. Math. Soc.295, 175–190 (1986)

    Google Scholar 

  • [GK] Goldman, W., Kamishima, Y.: The fondamental group of a compact flat Lorentz space form is virtually polycyclic. J. Diff. Geom.19, 233–240 (1984)

    Google Scholar 

  • [GP] Guillemin, V., Pollack, A.: Differential topology. New York: Prentice Hall 1974

    Google Scholar 

  • [Kob] Kobayashi, S.: Projectively invariant distances for affine and projective structures in Differential Geometry, Vol. 2, pp. 127–152, Banach Center Publications, Polish Scientific Publishers, Warsaw, 1984

    Google Scholar 

  • [Kos] Koszul, J.L.: Variétés localement plates et convexité. Osaka J. Math.2, 285–290 (1965)

    Google Scholar 

  • [Mar] Markus, L.: Cosmological models in differential geometry, mimeographed notes. University of Minnesota, 1962

  • [Mil] Milnor, J.: Topology from the Differentiable viewpoint. Univ. Press of Virginia, 1965

  • [P] Palmeira, C.F.B.: Open manifolds foliated by planes. Ann. Math.107, 109–131 (1978)

    Google Scholar 

  • [Sm] Smillie, J.: Affinely flat manifolds, Doctoral Dissertation, University of Chicago, 1977

  • [ST] Sullivan, D., Thurston, W.: Manifolds with canonical coordinates: some examples. Enseign. Math.29, 15–25 (1983)

    Google Scholar 

  • [T] Thurston, W.: The geometry and topology of 3-manifolds, chapter 3. Princeton University, 1978

  • [W] Wolf, J.: Spaces of constant curvature. New York: McGraw-Hill 1967

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrière, Y. Autour de la conjecture de L. Markus sur les variétés affines. Invent Math 95, 615–628 (1989). https://doi.org/10.1007/BF01393894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01393894

Navigation