Skip to main content
Log in

Freeze fracture immunocytochemistry of light-harvesting pigment complexes in a cryptophyte

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Immunocytochemical techniques using colloidal gold as the marker have been used to examine the location of the two light harvesting pigment-protein complexes in cryptophyte chloroplasts. A comparison of post-embedding thin section labelling and freeze fracture labelling has been carried out onRhodomonas salina using polyclonal antibodies to a chlorophylla/c 2 light-harvesting complex, phycoerythrin and the β-subunit of phycoerythrin. The effect of different fixation procedures on the intensity of labelling and ac curacy of antigen location have been examined and the effectiveness of uranyl acetate and tannic acid in improving both the preservation of thylakoid structure and labelling density of phycoerythrin has been demonstrated. Freeze fracture labelling gives better spatial res olution of the different antigens than post-embedding labelling, as well as better definition of thylakoid membranes. It confirms the location of phycoerythrin in the thylakoid lumen and the location of the chlorophylla/c 2 LHC in both appressed and unappressed thylakoid membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

PE:

phycoerythrin

chl:

chlorophyll

LHC:

light-har-vesting complex

References

  • Aguas AP, Pinto da Silva P (1984) High density of transmembrane glycoproteins on the flagellar surface of boar sperm cells. J Cell Biol 99: 655–660

    PubMed  Google Scholar 

  • Bendayan M, Nanci A, Kan FWK (1987) Effect of tissue processing on colloidal gold cytochemistry. J Histochem Cytochem 35: 983–996

    PubMed  Google Scholar 

  • Dwarte D, Vesk M (1983) A freeze-fracture study of cryptomonad thylakoids. Protoplasma 117: 130–141

    Google Scholar 

  • Berryman MA, Rodewald RD (1990) An enhanced method for postembedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem 38: 159–170

    PubMed  Google Scholar 

  • Erickson PA, Anderson DH, Fisher SK (1987) Use of uranyl acetate en bloc to improve tissue preservation and labeling for postembedding immunoelectron microscopy. J Electron Microsc Tech 5: 303–314

    Google Scholar 

  • Faust MA, Gantt E (1973) Effect of light intensity and glycerol on the growth, pigment composition, and ultrastructure ofChroomonas sp. J Phycol 9: 489–495

    Google Scholar 

  • Gantt E, Edwards MR, Provasoli L (1971) Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoidal spaces. J Cell Biol 48: 280–290

    Google Scholar 

  • Goodchild DJ, Andersson B, Anderson JM (1985) Immunocytochemical localization of polypeptides associated with the oxygen evolving system of photosynthesis. Europ J Cell Biol 36: 294–298

    Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies on marine planktonic diatoms. I.Cyclotella nana Hustedt andDetonala confervaceae (Cleve) Gran. Can J Microbiol 8: 229–239

    PubMed  Google Scholar 

  • Hawkes R, Niday E, Gordon J (1982) A dot-immunobinding assay for monoclonal and other antibodies. Anal Bidchem 119: 142–147

    Google Scholar 

  • Hill DRA, Wetherbee R (1989) A reappraisal of the genusRhodomonas (Cryptophyceae). Phycologia 28: 143–158

    Google Scholar 

  • Hiller RG, Martin CD (1987) Multiple forms of a type I phycoerythrin from aChroomonas sp. (Cryptophyceae) varying in subunit composition. Biochim Biophys Acta 923: 98–102

    Google Scholar 

  • —, Wrench PM, Larkum AWD (1988) Chlorophyll proteins of the prymnesiophytePavlova lutherii (Droop) comb. nov.: identification of the major light-harvesting complex. Biochim Biophys Acta 932: 223–231

    Google Scholar 

  • Ingram K, Hiller RG (1983) Isolation and characterization of a major chlorophylla/c 2 light-harvesting protein fromChroomonas species (Cryptophyceae). Biochim Biophys Acta 772: 310–319

    Google Scholar 

  • Jenkins J, Hiller RG, Speiss J, Godovac-Zimmermann J (1990) A genomic clone encoding a cryptophyte phycoerythrin α-subunit. FEBS Lett 273: 191–194

    PubMed  Google Scholar 

  • Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10: 203–209

    PubMed  Google Scholar 

  • Lichtlé C, Duval JC, Lemoine Y (1987) Comparative biochemical, functional, and ultrastructural studies of photosystem particles from a Cryptophyceae:Cryptomonas rufescens; isolation of an active phycoerythrin particle. Biochim Biophys Acta 894: 76–90

    Google Scholar 

  • —, McKay ML, Gibbs SP (1992) Immunogold localization of photosystem I and photosystem II light-harvesting complexes in cryptomonad thylakoids. Biol Cell 74: 187–194

    Google Scholar 

  • Ludwig M, Gibbs SP (1989) Localization of phycoerythrin at the luminal surface of the thylakoid membrane inRhodomonas lens. J Cell Biol 108: 875–884

    PubMed  Google Scholar 

  • MacColl R, Guard-Friar D (1987) Phycobiliproteins. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Martin CD, Hiller RG (1987) Subunits and chromophores of a type I phycoerythrin from aChroomonas sp. (Cryptophyceae). Biochim Biophys Acta 922: 88–97

    Google Scholar 

  • Mörschel E, Wehrmeyer W (1979) Elektronenmikroskopische Feinstrukturanalyse von nativen Biliproteidaggregaten und deren räumliche Ordnung. Ber Dtsch Bot Ges 92: 393–402

    Google Scholar 

  • Pinto da Silva P, Parkinson C, Dwyer N (1981) Freeze-fracture cytochemistry: thin sections of cells and tissues after labeling of fracture faces. J Histochem Cytochem 29: 917–928

    PubMed  Google Scholar 

  • Reith M, Douglas S (1990) Localisation of β-phycoerythrin to the thylakoid lumen ofCryptomonas Ф does not involve a signal peptide. Plant Mol Biol 15: 585–592

    PubMed  Google Scholar 

  • Rhiel E, Mörschel E, Wehrmeyer W (1985) Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes inCryptomonas maculata following nutrient deficiency. Protoplasma 129: 62–73

    Google Scholar 

  • —, Krupinska K, Wehrmeyer W (1986) Effects of nitrogen starvation on the function and organization of the photosynthetic membranes inCryptomonas maculata (Cryptophyceae). Planta 169: 361–369

    Google Scholar 

  • —, Mörschel E, Wehrmeyer W (1987) Characterization and. structural analysis of a chlorophylla/c light harvesting complex and of photosystem I particles isolated from thylakoid membranes ofCryptomonas maculata (Cryptophyceae). Eur J Cell Biol 43: 82–92

    Google Scholar 

  • —, Kunz J, Wehrmeyer W (1989) Immunocytochemical localization of phycoerythrin-545 and of a chlorophylla/c light harvesting complex inCryptomonas maculata (Cryptophyceae). Bot Acta 102: 46–53

    Google Scholar 

  • Roth J (1982) The protein-A gold (pAg) technique-a qualitative and quantitative approach for antigen localization on thin sections. In: Bullock GR, Petrusz P (eds) Techniques in immunocytochemistry, vol 1. Academic Press, London, pp 107–133

    Google Scholar 

  • Severs NJ (1989) Freeze-fracture cytochemistry: review of methods. J Electron Microsc Tech 13: 175–203

    PubMed  Google Scholar 

  • Simionescu N, Simionescu M (1976) Galloylglucoses of low molecular weight of as mordant in electron microscopy I. J Cell Biol 70: 608–621

    PubMed  Google Scholar 

  • Spear-Bernstein L, Miller KR (1985) Are the photosynthetic membranes of cryptophyte algae inside out? Protoplasma 129: 1–9

    Google Scholar 

  • —, Miller KR (1987) Immunogold localization of the phycobiliprotein of a cryptophyte alga to the intrathylakoid space. In: Biggens J (ed) Progress in photosynthesis research, vol 2. Martinus Nijhoff, Dordrecht, pp 309–312

    Google Scholar 

  • — — (1989) Unique location of the phycobiliprotein light-har-vesting pigment in the Cryptophyceae. J Phycol 25: 412–419

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–42

    PubMed  Google Scholar 

  • Staehelin LA (1986) Chloroplast structure and supramolecular organization of photosynthetic membranes. In: Staehelin LA, Arntzen CJ (eds) Photosynthesis III. Springer, Berlin Heidelberg New York Tokyo, pp 1–84 [Pierson A, Zimmermann MH (eds) Encyclopedia of Plant Physiology NS, vol 19]

    Google Scholar 

  • Vallon O, Wollman FA, Olive J (1985) Distribution of intrinsic and extrinsic subunits of PS II protein complex between appressed and non-appressed regions of the thylakoid membrane: an immunocytochemical study. FEBS Lett 183: 245–250

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesk, M., Dwarte, D., Fowler, S. et al. Freeze fracture immunocytochemistry of light-harvesting pigment complexes in a cryptophyte. Protoplasma 170, 166–176 (1992). https://doi.org/10.1007/BF01378791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01378791

Keywords

Navigation