Skip to main content
Log in

Freezing tolerance in the intertidal red algaeChondrus crispus andMastocarpus stellatus: Relative importance of acclimation and adaptation

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The effect of repeated daily freezing on photosynthesis, growth and phenotypic acclimation to freezing was studied in the red algaeChondrus crispus Stackhouse andMastocarpus stellatus (Stackhouse in With.) Guiry. Algae used for experiments were collected from Chamberlain, Maine, between March and August 1987, and field observations and experiments were carried out at Chamberlain and Kresge Point, Maine between March 1987 and March 1989. After ca 30 d of daily freezing for 3 h at −5°C photosynthesis ofC. crispus was reduced to 55% of control values. Growth rates ofC. crispus were also reduced in fronds frozen daily compared to unfrozen controls, and eventually fronds became bleached and fragmented resulting in biomass losses. Fronds ofC. crispus, frozen daily, had higher photosynthetic rates following freezing events than unfrozen controls indicating that this species can acclimate to freezing conditions. Acclimation to freezing involves the light-harvesting reactions of photosynthesis. In contrast, photosynthesis and growth inM. stellatus were unaffected by repeated daily freezing for 3 h at −5°C for 36 d. No differences in photosynthesis following freezing were observed between frozen and control fronds suggesting thatM. stellatus does not phenotypically acclimate to freezing. The greater freezing tolerance ofM. stellatus relative toC. crispus results, in part, from genetic adaptations associated with plasma membranes and the light-harvesting reactions of photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Berry, J. A., Björkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. A. Rev. Pl. Physiol. 31: 491–543

    Google Scholar 

  • Biebl, R. (1972). Temperature resistance of marine algae. Proc. 7th. int. Seaweed Symp. (Sapporo, Japan) 12: 23–28 [Nisizawa, K. (ed. in chief) University Press, Tokyo]

    Google Scholar 

  • Bird, C. J., McLachlan, J. (1974). Cold-hardiness of zygotes and embryos ofFucus (Phaeophyceae, Fucales). Phycologia 13: 215–225

    Google Scholar 

  • Davison, I. R. (1987). Adaptation of photosynthesis inLaminaria saccharina (Phaeophyta) to changes in growth temperature. J. Phycol. 23: 273–283

    Google Scholar 

  • Davison, I. R., Davison, J. O. (1987). The effect of growth temperature on enzyme activities in the brown algaLaminaria saccharina (L.) Lamour. Br phycol. J. 22: 77–87

    Google Scholar 

  • Davison, I. R., Dudgeon, S. R., Ruan, H.-M. (1989). The effect of freezing on seaweed photosynthesis. Mar. Ecol. Prog. Ser. 58: 123–131

    Google Scholar 

  • Dring, M. J., Brown, F. A. (1982). Photosynthesis of intertidal brown algae during and after periods of emersion: a renewed search for physiological causes of zonation. Mar. Ecol. Prog. Ser. 8: 301–308

    Google Scholar 

  • Dudgeon, S. R., Davison, I. R., Vadas, R. L. (1989). Effect of freezing on photosynthesis in intertidal macroalgae: relative tolerances ofChondrus crispus andMastocarpus stellatus (Rhodophyta). Mar. Biol. 101: 107–114

    Google Scholar 

  • Espinoza, J., Chapman, A. R. O. (1983). Ecotypic differentiation ofLaminaria longicruris in relation to seawater nitrate concentration. Mar. Biol. 74: 213–218

    Google Scholar 

  • Etter, R. J. (1988). Asymmetrical developmental plasticity in an intertidal snail. Evolution, Lawrence, KA 42: 322–334

    Google Scholar 

  • Evans, G. C. (1972). The quantitative analysis of plant growth. Blackwell Publishing Co, Oxford

    Google Scholar 

  • Frazer, A. W. J., Brown, M. T., Bannister, P. (1988). The frost resistance of some littoral and sub-littoral algae from southern New Zealand. Botanica mar. 31: 461–464

    Google Scholar 

  • Garber, M. P. (1977). Effect of light and chilling temperature on chilling-sensitive and chilling-resistant plants. Pl. Physiol., Wash. 59: 981–985

    Google Scholar 

  • Gerard, V. (1988). Ecotypic differentiation in light-related traits of the kelpLaminaria saccharina. Mar. Biol. 97: 25–36

    Google Scholar 

  • Gordon-Kamm, W. J., Steponkus, P. L. (1984). Lamellar to hexagonal II phase transitions in plasma membrane of isolated protoplasts after freeze induced dehydration. Proc. natn. Acad. Sci. U.S.A. 81: 6373–6377

    Google Scholar 

  • Green, J. E. (1983). Factors controlling the vertical zonation of two intertidal seaweeds:Chondrus crispus Stackhouse andGigartina stellata (Stackhouse) Batters. M. Sc. Thesis, Northeastern University, Boston

    Google Scholar 

  • Grime, J. P. (1979). Plant strategies and vegetation processes. Wiley & Sons, New York

    Google Scholar 

  • Guy, C. L., Haskell, D. (1987). Induction of freezing tolerance in spinach is associated with the synthesis of cold acclimation induced proteins. Pl. Physiol., Wash. 84: 872–878

    Google Scholar 

  • Harper, J. L. (1977). Population biology of plants. Academic Press, London

    Google Scholar 

  • Kanwisher, J. W. (1957). Freezing and drying in intertidal algae. Biol. Bull. mar. biol. Lab., Woods Hole 113: 275–285

    Google Scholar 

  • Levins, R. (1968). Evolution in changing environments. Princeton University Press, Princeton

    Google Scholar 

  • Lubchenco, J. (1980). Algal zonation in the New England rocky intertidal community: an experimental analysis. Ecology 61: 333–344

    Google Scholar 

  • Lyons, J. M., Graham, D., Raison, J. K. (1979). Low temperature stress in crop plants: the role of the membrane. Academic Press, New York

    Google Scholar 

  • Martin, B., Märtensson, O., Öquist, G. (1978). Effects of frost hardening and dehardening on photosynthetic electron transport and fluorescence properties in isolated chloroplasts ofPinus silvestris. Physiologia Pl. 43: 297–305

    Google Scholar 

  • Martin, B., Öquist, G. (1979). Seasonal and experimentally induced changes in the ultrastructure of chloroplasts ofPinus silvestris. Physiologia Pl. 46: 42–49

    Google Scholar 

  • Mathieson, A. C., Burns, R. L. (1971). Ecological studies of economic red algae. I. Photosynthesis and respiration ofChondrus crispus Stackhouse andGigartina stellata (Stackh.) Batters. J. exp. mar. Biol. Ecol. 7: 197–206

    Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. Belknap Press of Harvard University, Cambridge

    Google Scholar 

  • Öquist, G., Brunes, L., Hällgren, J.-E., Gezelius, K., Hallén, M., Malmberg, G. (1980). Effects of artificial frost hardening and winter stress on net photosynthesis, photosynthetic electron transport, and Rubp carboxylase activity in seedlings ofPinus silvestris. Physiologia Plant. 48: 526–531

    Google Scholar 

  • Parker, J. (1960). Seasonal changes in cold-hardiness ofFucus vesiculosus. Biol. Bull. mar. biol. Lab., Woods Hole 119: 474–478

    Google Scholar 

  • Powles, S. B. (1984). Photoinhibition of photosynthesis induced by visible light. A. Rev. Pl. Physiol. 35: 15–44

    Google Scholar 

  • Provasoli, L. (1968). Media and prospects for the cultivation of marine algae. In: Watanabe, A., Hattori, A. (eds.) Cultures and collections of algae. Jap. Soc. Plant Physiol., Hakone p. 63–75

    Google Scholar 

  • Rosenberg, G. (1981). Ecological growth strategies in the seaweedsGracilaria foliifera (Rhodophyceae) andUlva sp. (Chlorophyceae). PhD Dissertation, Yale University, New Haven

    Google Scholar 

  • Schonbeck, M. W., Norton, T. A. (1978). Factors controlling the upper limits of fucoid algae on the shore. J. exp. mar. Biol. Ecol. 31: 303–313

    Google Scholar 

  • Schonbeck, M. W., Norton, T. A. (1979a). Drought-hardening in the upper shore seaweedsFucus spiralis andPelvetia canaliculata. J. Ecol. 67: 687–696

    Google Scholar 

  • Schonbeck, M. W., Norton, T. A. (1979b). An investigation of drought avoidance in intertidal fucoid algae. Botanica mar. 22: 133–144

    Google Scholar 

  • Singh, J. B., Johnson-Flanagan, A. M. (1987). Membrane alterations in winter rye andBrassica napus cells during lethal freezing and plasmolysis. Pl. Cell Envir. 10: 163–168

    Google Scholar 

  • Spearing, A. M., Karlander, E. P. (1979). Effects of light and low temperatures on chlorophyll content and metabolism ofChlorella sorokiniana Shihira and Krauss. Envir. exp. Bot. 19: 237–243

    Google Scholar 

  • Van Hasselt, Ph. R. (1972). Photo-oxidation of leaf pigments in cucumis leaf discs during chilling. Acta bot. neerl. 21: 539–548

    Google Scholar 

  • Von Swaaij, A. C., Jacobsen, E., Feensra, W. J. (1985). Effect of cold hardening, wilting and exogenously applied proline on leaf proline content and frost tolerance of several genotypes ofSolanum. Physiologia Pl. 64: 230–236

    Google Scholar 

  • Wood, W. F. (1987). Effect of solar ultra-violet radiation on the kelpEcklonia radiata. Mar. Biol. 96: 143–150

    Google Scholar 

  • Worrest, R. C. (1982). Review of literature concerning the impact of UV-B radiation on marine organisms, In: Calkins, J. (ed.). The role of solar radiation in marine ecosystems. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudgeon, S.R., Davison, I.R. & Vadas, R.L. Freezing tolerance in the intertidal red algaeChondrus crispus andMastocarpus stellatus: Relative importance of acclimation and adaptation. Mar. Biol. 106, 427–436 (1990). https://doi.org/10.1007/BF01344323

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01344323

Keywords

Navigation