Skip to main content
Log in

Turbulent heat transfer in circular tube flows of viscoelastic fluids

Turbulenter Wärmetransport bei Strömung in kreisrunden Rohren von viskoelastischen Medien

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The effects of thermal entrance length, polymer degradation and solvent chemistry were found to be critically important in the determination of the drag and heat transfer behavior of viscoelastic fluids in turbulent pipe flow.

The minimum heat transfer asymptotic values in the thermally developing and in the fully developed regions were experimentally determined for relatively high concentration solutions of heat transfer resulting in the following correlations:

$$\begin{gathered} j_H = 0.13\left( {\frac{x}{d}} \right)^{ - 0.24} \operatorname{Re} _a^{ - 0.45} thermally developing region \hfill \\ x/d< 450 \hfill \\ j_H = 0.03 \operatorname{Re} _a^{ - 0.45} thermally developed region \hfill \\ x/d< 450 \hfill \\ \end{gathered} $$

For dilute polymer solutions the heat transfer is a function ofx/d, the Reynolds number and the polymer concentration.

The Reynolds analogy between momentum and heat transfer which has been widely used in the literature for Newtonian fluids is found not to apply in the case of drag-reducing viscoelastic fluids.

Zusammenfassung

Der Einfluß der thermischen Einlauflänge, die polymere Zersetzung und die Lösungsmittelchemie wurden als wichtige Einflußgrößen bei der Bestimmung des Widerstandes und Wärmeüberganges bei turbulenter Rohrströmung von viskoelastischen Fluiden erkannt.

Für Lösungen mit relativ hoher Konzentration wurden die minimalen asymptotischen Wärmeübergangszahlen in der thermischen Einlaufstrecke und der voll ausgebildeten Strömung experimentell ermittelt. Folgende Gleichungen beschreiben den Wärmeübergang:

$$\begin{gathered} j_H = 0.13\left( {\frac{x}{d}} \right)^{ - 0.24} \operatorname{Re} _a^{ - 0.45} f\ddot ur das thermische Einlaufgebiet \hfill \\ x/d< 450 \hfill \\ j_H = 0.03 \operatorname{Re} _a^{ - 0.45} f\ddot ur die ausgebildete Str\ddot omung \hfill \\ x/d< 450 \hfill \\ \end{gathered} $$

Bei verdünnten Polymerlösungen ist der Wärmeübergang eine Funktion vonx/d, der Re-Zahl und der Polymerkonzentration. Die Reynolds-Analogie zwischen Impuls- und Wärmetransport, die in der Literatur häufig auf Newtonsche Fluide angewendet wird, ist nicht anwendbar bei widerstandsreduzierenden, viskoelastischen Fluiden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

concentration (wppm)

d :

tube diameter (cm)

De:

Deborah number

h :

convective heat transfer coefficient (w/m2‡C)

jH :

heat transferj factor, StPr2/3

k :

thermal conductivity of fluid (w/m ‡C)

K′, n :

power-law constant in Τw=K′ (8V/d) n

l :

total tube length (cm)

Nu:

Nusselt number,h d/K

Pra :

Prandtl number based on the viscosity at wall,η C p/K

Rea :

Reynolds number based on the viscosity at wall,ϱ Vd/η

Re′:

Reynolds number defined asV 2−n dn/(K′ 8n−n)

St:

Stanton number, Nu/(Rea Pra)

T b :

bulk temperature of fluid

T w :

inside wall temperature

¯T :

characteristic time of the flow

V :

average velocity

x :

axial distance (cm)

\(\dot \gamma \) :

shear rate (l/sec)

η :

apparent viscosity evaluated at wall (poise)

ϱ :

density of fluid (g/cm3)

Τ w :

wall shear stress (dyne/cm2)

λ :

characteristic time of fluid

%DR:

percentage drag reduction defined as (fNewtonian f)/fNewtonian

%HTR:

percentage heat transfer reduction defined as (j H,Newtonian-j)/j H.Newtonian

exit:

data collected at the tube exit

References

  1. Toms, B. A.: Some Observations on the Flow of Linear Polymer Solutions through Straight Tubes at Large Reynolds Numbers. Proc. Int. Congr. on Rheology 2 (1949) 135

    Google Scholar 

  2. Mysels, K. J.: Flow of Thickened Fluids. U.S. Patent No. 2,492,173 (1949) and Early Experiences with Viscous Drag Reduction. Chem. Eng. Prog. Symp. Ser. 67 (1971) 45

    Google Scholar 

  3. Tung, T. T., Ng, K. S.; Hartenett, J. P.: Influence of Rheological Property Changes on Friction and Convective Heat Transfer in a Viscoelastic Polyacrylamide Solution. Toronto: Sixth Int'l Heat Transfer Conf. 1978

  4. Yoo, S. S.: Ph. D. Thesis, Heat Transfer and Friction Factors for Non-Newtonian Fluids in Turbulent Pipe Flow. University of Illinois at Chicago Circle 1974

  5. Marrucci, G; Astarita, G.: Turbulent Heat Transfer in Viscoelastic Liquids. Ind. Eng. Chem. Fundam. 6 (1967) 470

    Google Scholar 

  6. Pruitt, G. T.; Whitsitt, N. F.; Crawford, H. R.: Turbulent Heat Transfer to Viscoelastic Fluids. The Western Company, Contract No. NA7-369, 1966

  7. Wells, C. S., Jr.: Turbulent Heat Transfer in Drag Reducing Fluids. AIChE J. 14 (1968) 406

    Google Scholar 

  8. Corman, J. C.: Exoerimental Study of Heat Transfer to Viscoelastic Fluids. Ind. Eng. Chem. Process, Des. Dev. 2 (1970) 254

    Google Scholar 

  9. Poreh, M.; Paz, U.: Turbulent Heat Transfer to Dilute Polymer Solutions. Int. J. Heat Mass Transfer 11 (1968) 805

    Google Scholar 

  10. Mizushina, T.; Usui, H.: Reduction of Eddy Diffusion for Momentum and Heat in Viscoelastic Fluid Flow in a Circular Tube. Phy. Fluids 20 (1977) S 100

    Google Scholar 

  11. Ibele, W.: Thermophysical Properties. Handbook of Heat Transfer (ed. Rohsenow, W. M.; Hartnett, J. P.). New York: McGraw-Hill 1973

    Google Scholar 

  12. Gupta, M. K.; Metzner, A. B.; Hartnett, J. P.: Turbulent Heat Transfer Characteristics of Viscoelastic Fluids. Int. J. Heat Mass Transfer 10 (1967) 1211

    Google Scholar 

  13. Khabakhpasheva, M. E.; Popov, V. I.; Perepelitsa, B. V.: Heat Transfer in Viscoelastic Fluids in Heat Transfer. Vol. IV, Fourth Int. Heat Transfer Conf, Paris-Versailles, p. Rh 2, 1970

    Google Scholar 

  14. Monti, R.: Heat Transfer in Drag-Reducing Solutions (ed. Schowalter, W. R.; Minkowycz, W. J.; Luikov, A. V.; Afgan, N. H.;). Prog, in Heat and Mass Transfer 5 (1972) 239

  15. Ng, K. S.; Cho, Y. I.; Hartnett, J. P.: Heat Transfer Performance of Concentrated Polyethylene Oxide and Polyacrylamide Solutions. AIChE Symp. Ser. 76 (1980) 250

    Google Scholar 

  16. Chiou, C. S.; Gordon, R. J.: Low Shear Viscosity of Dilute Polymer Conformation on Turbulent Drag Reduction. AIChE J. 26 (1980) 852

    Google Scholar 

  17. White, D., Jr.; Gordon, R. J.: The Influence of Polymer Conformation on Turbulent Drag Reduction. AIChE J. 21 (1975) 1027

    Google Scholar 

  18. Kwack, E. Y.; Hartnett, J. P.; Cho, Y. I.: Chemical Effects in the flow of Dilute Polymer Solutions. Letters Heat Mass Transfer 7 (1980) 1

    Google Scholar 

  19. Bird, R. B.: Zur Theorie des Wärmeübergangs an nicht-Newtonsche Flüssigkeiten bei laminarer Rohrströmung. Chem.-Ing.-Teck. 31 (1959) 569

    Google Scholar 

  20. Cho, Y. I.; Ng, K. S.; Hartnett, J. P.: Viscoelastic Fluids in Turbulent Pipe Flow — a new Heat Transfer Correlation. Lett. Heat Mass Transfer 7 (1980) 347

    Google Scholar 

  21. Virk, P. S.; Mickley, H. S.; Smith, K. A.: The Ultimate Asymptote and Mean Flow Structure in Toms' Phenomenon. Trans. ASME J. Appl. Mech. 37 (1970) 488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Grigull on his 70th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwack, E.Y., Hartnett, J.P. & Cho, Y.I. Turbulent heat transfer in circular tube flows of viscoelastic fluids. Wärme- und Stoffubertragung 16, 35–44 (1982). https://doi.org/10.1007/BF01322804

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01322804

Keywords

Navigation