Skip to main content
Log in

A three-beam case X-ray interferometer

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A new type of X-ray interferometer is described in which total reflection is established in the process of beam splitting, beam deflection and beam recombination by making essential use of simultaneous Bragg case diffraction from two different sets of net planes.

The amplitudes of the interfering beams are calculated along the lines of the dynamical theory of X-ray diffraction. It is found that in the general non-planar three-beam case a complicated interaction of polarization states occurs which results in a destruction of interference contrast. On the other hand, in the planar case the polarization states stay separated and interference contrast can reach 100%.

A monolithic interferometer using coplanar (440) and (404) reflections was made from a perfect silicon crystal and operated successfully. The degree of interference contrast was investigated experimentally with NiK α radiation of an ordinary X-ray tube and with synchrotron X-rays from DESY.

Focusing requirements and source properties influencing the coherence conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonse, U., Hart, M.: Appl. Phys. Lett.6, 155 (1965)

    Google Scholar 

  2. Bonse, U., Hart, M.: Z. Physik194, 1 (1966)

    Google Scholar 

  3. Ewald, P.P., Héno, Y.: Acta Cryst.A24, 5 (1968)

    Google Scholar 

  4. Mayer, G.: Z. Krist.66, 585 (1928)

    Google Scholar 

  5. Fues, E.: Z. Physik109, 14, 236 (1938)

    Google Scholar 

  6. Lamla, E.: Ann. Phys.36, 194 (1939)

    Google Scholar 

  7. Kambe, K.: J. Phys. Soc. Jap.12, 13, 25 (1957)

    Google Scholar 

  8. Penning, P., Polder, D.: Philips Res. Rep.23, 1, 12 (1968)

    Google Scholar 

  9. Borodina, T.I., Katznelson, A.A., Kissin, V.I.: phys. stat. sol.A3, 105 (1970)

    Google Scholar 

  10. Kshevetskaya, M.L., Kshevetsky, S.A., Mikhailyuk, I.P., Raransky, N.D.: Ukr. Fiz. Zh.18, 578, 2052 (1973)

    Google Scholar 

  11. Saccocio, E.J., Zajac, A.: Phys. Rev.139, A255 (1965)

    Google Scholar 

  12. Hildebrandt, G.: phys. stat. sol.24, 245 (1967)

    Google Scholar 

  13. Joko, T., Fukuhara, A.: J. Phys. Soc. Jap.22, 597 (1967)

    Google Scholar 

  14. Dalisa, A.L., Zajac, A., Ng, C.H.: Phys. Rev.168, 859 (1968)

    Google Scholar 

  15. Feldman, R., Post, B.: phys. stat. sol.A12, 273 (1972)

    Google Scholar 

  16. Kato, N.: Acta Cryst.11, 885 (1958)

    Google Scholar 

  17. von Laue, M.: Röntgenstrahlinterferenzen, Frankfurt: Akademische Verlagsgesellschaft 1960

    Google Scholar 

  18. Hildebrandt, G., Umeno, M.: 10th Int. Congr. of Cryst. Amsterdam, 1975

  19. Bonse, U., te Kaat, E.: Z. Physik243, 14 (1971)

    Google Scholar 

  20. Parratt, L.G.: Phys. Rev.50, 1 (1936)

    Google Scholar 

  21. Bonse, U., Materlik, G., Schröder, W.: J. Appl. Cryst.9, 223 (1976)

    Google Scholar 

  22. Ando, M., Hosoya, S.: Proc. of the 6th Int. Conf. on X-Ray Optics and Microanalysis 63 (1972)

  23. Becker, P., Bonse, U.: J. Appl. Cryst.7, 593 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of doctorate thesis (University of Dortmund, 1976)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graeff, W., Bonse, U. A three-beam case X-ray interferometer. Z Physik B 27, 19–32 (1977). https://doi.org/10.1007/BF01315501

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01315501

Keywords

Navigation