Skip to main content
Log in

Effect of adrenalectomy and corticosterone substitution on glucose and glycogen metabolism in rat brain

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

In non-nervous tissues, glucocorticoids (GCs) counteract the effects of insulin and stimulate gluconeogenesis. The present study was designed to investigate whether or not adrenalectomy (ADX) and glucocorticoid substitution influence the pathway of both glucose and glycogen metabolism in cerebral parietotemporal cortex and hippocampus, and if so how. The activities of respective key enzymes, such as hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), glucose-6-phosphatase (G6Pase) and phosphorylase a (PLa), and the concentrations of the intermediates, such as glucose (Glu), glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (F16PP), pyruvate (Pyr), lactate (Lac), glycogen (Glyc) and glucose-1-phosphate (G1F), were measured in the brains of 1-year-old male Wistar rats under controlled conditions 3 days after ADX or sham operation and in a pilot study after ADX and substitution with corticosterone (CST) suspended in sesame oil or after ADX and subcutaneous administration of the vehicle only. An increase in both glycolytic flux and glycogen breakdown and a decrease in gluconeogenesis in cerebral cortex but not in hippocampus were observed after ADX. After substitution with CST in adrenalectomized rats the effect of ADX on enzyme activities was reversed: significant differences from adrenalectomized rats that received vehicle only was shown for PK and G6Pase activities in both areas of the rat brain investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alegre M, Cindad CJ, Fillat C, Guinovart JJ (1988) Determination of glucose-6-phosphatase using the glucose dehydrogenase-coupled reaction. Anal Biochem 173: 185–189

    Google Scholar 

  • Aronsson M, Fuxe K, Dong Y, Agnati LF, Okret S, Gustafsson JA (1988) Localization of glucocorticoid receptor mRNA in the male rat brain by in situ hybridization. Proc Natl Acad Sci USA 85: 9331–9335

    Google Scholar 

  • aus der Mühlen K, Ockenfels H (1969) Morphologische Veränderungen im Diencephalon und Telencephalon nach Störungen des Regelkreises Adenohypophyse-Nebennierenrinde. III. Ergebnisse beim Meerschweinchen nach Verabreichung von Cortison und Hydrocortison. Z Zellforsch 93: 126–141

    Google Scholar 

  • Bergmeyer HU (1974) Methods in enzymatic analysis, vol 1 and 2. Verlag Chemie/Academic, New York London

    Google Scholar 

  • Bush ML, Miyashiro JS, Ingram VM (1995) Activation of a neurofilament kinase, a tau kinase, and a tau phosphatase by decreased ATP levels in nerve growth factor-differentiated PC-12 cells. Proc Natl Acad Sci USA 92: 1861–1865

    Google Scholar 

  • Cohen PJ, Alexander SC, Smith TC, Reivich M, Wollman H (1967) Effect of hypoxia and normocarbia on cerebral blood flow and metabolism in concious man. J Appl Physiol 23: 183–189

    Google Scholar 

  • Elliott EM, Sapolsky RM (1993) Corticosterone impairs hippocampal neuronal calcium regulation — possible mediating mechanisms. Brain Res 602: 84–90

    Google Scholar 

  • Erecinska M, Silver IA (1989) ATP and brain function. J Cereb Blood Flow Metab 9: 2–19

    Google Scholar 

  • Folbergrova J, MacMillan V, Siesjö BK (1972) The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmatic NADH/NAD1 ratio of the rat brain. J Neurochem 19: 2497–2505

    Google Scholar 

  • Folbergrova J, Ponten U, Siesjö BK (1974) Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J Neurochem 22: 1115–1125

    Google Scholar 

  • Fukuyama H, Ogawa M, Yamauchi H, Yamaguchi S, Kimura J, Yonekura Y, Konishi J (1994) Altered cerebral energy metabolism in Alzheimer's disease: a PET study. J Nucl Med 35: 1–6

    Google Scholar 

  • Funder JW (1994) Corticosteroid receptors and the central nervous system. J Steroid Biochem Mol Biol 49: 381–384

    Google Scholar 

  • Gabuzda D, Busciglio J, Chen LB, Matsudaira P, Yankner BA (1994) Inhibition of energy metabolism alters the processing of amyloid precursor protein and induces a potentially amyloidogenic derivative. J Biol Chem 260: 13623–13628

    Google Scholar 

  • Hamer J, Hoyer S, Alberti E, Weinhardt F (1976) Cerebral blood flow and oxidative brain metabolism during and after moderate and profound arterial hypoxaemia. Acta Neurochir 33: 141–150

    Google Scholar 

  • Henneberg N, Hoyer S (1994) Short-term or long-term intracerebroventricular (i.c.v.) infusion of insulin exhibits a discrete anabolic effect on cerebral energy metabolism in the rat. Neurosci Lett 175: 153–156

    Google Scholar 

  • Herman JP, Patel PD, Akil H, Watson SJ (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol Endocrinol 3: 1886–1894

    Google Scholar 

  • Horner HC, Packan DR, Sapolsky RM (1990) Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology 52: 57–64

    Google Scholar 

  • Hoyer S (1970) Der Aminosäurenstoffwechsel des normalen menschlichen Gehirns. Klin Wochenschr 48: 1239–1243

    Google Scholar 

  • Hoyer S (1992) Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases. Mol Chem Neuropathol 16: 207–224

    Google Scholar 

  • Hoyer S (1993) Editor's note for debate. Sporadic dementia of Alzheimer type: role of amyloid in etiology is challenged. J Neural Transm [P-D Sect] 6: 159–165

    Google Scholar 

  • Hoyer S, Hamer J, Alberti E, Stoeckel H, Weinhardt F (1974) The effect of stepwise arterial hypotension on blood flow and oxidative metabolism of the brain. Pflügers Arch 351: 161–172

    Google Scholar 

  • Hoyer S, Prem L, Sorbi S, Amaducci L (1993) Stimulation of glycolytic key enzymes in cerebral cortex by insulin. NeuroReport 4: 991–993

    Google Scholar 

  • Kadekaro M, Ito M, Gross PM (1988) Local cerebral glucose utilization is increased in acutely adrenalectomized rats. Neuroendocrinology 47: 329–334

    Google Scholar 

  • Kadowaki T, Kasuga M, Akanuma Y, Ezaki O, Takaku F (1984) Decreased autophosphorylation of the insulin receptor-kinase in streptozotocin diabetic rats. J Biol Chem 259: 14208–14216

    Google Scholar 

  • Kerr DS, Campbell LW, Hao SY, Landfield PW (1989) Corticosteroid modulation of hippocampal potentials: increased effect with aging. Science 245: 1505–1509

    Google Scholar 

  • Kerr DS, Campbell LW, Thibault O, Landfield PW (1992) Hippocampal glucocorticoid receptor activation enhances voltage-dependent Ca2+ conductances: relevance to brain aging. Proc Natl Acad Sci USA 89: 8527–8531

    Google Scholar 

  • Landfield PW, Braun LD, Pitler TA, Lindsen JD, Lynch G (1981) Hippocampal aging in rats: a morphometric study of multiple variables in semithin sections. Neurobiol Aging 2: 265–275

    Google Scholar 

  • Landfield PW, Waymire JC, Lynch G (1978) Hippocampal aging and adrenocorticoids: quantitative correlations. Science 202: 1098–1102

    Google Scholar 

  • Landgraf R, Mitro A, Hess J (1978) Regional net uptake of14C-glucose by rat brain under the influence of corticosterone. Endocrinol Exp 12: 119–129

    Google Scholar 

  • Lawrence MS, Sapolsky RM (1994) Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons. Brain Res 646: 303–306

    Google Scholar 

  • Lemaigre FP, Rousseau GG (1994) Transcriptional control of genes that regulate glycolysis and gluconeogenesis in adult liver. Biochem J 303: 1–14

    Google Scholar 

  • Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37: 1548–1556

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin Phenol reagent. J Biol Chem 193: 265–275

    Google Scholar 

  • Lowy MT (1989) Quantification of type I and II adrenal steroid receptors in neuronal, lymphoid and pituitary tissues. Brain Res 503: 191–197

    Google Scholar 

  • Martignoni E, Petraglia F, Costa A, Monzani A, Genazzani AR, Nappi G (1990) Cerebrospinal fluid corticotropin-releasing factor levels and stimulation test in dementia of the Alzheimer type. J Clin Lab Anal 4: 5–8

    Google Scholar 

  • Morse JK, Davis JN (1990) Regulation of ischemic hippocampal damage in the gerbil: adrenalectomy alters the rate of CA1 cell disappearence. Exp Neurol 110: 85–92

    Google Scholar 

  • Norberg K, Siesjö BK (1975) Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glycolysis; a re-evaluation. Brain Res 86: 31–44

    Google Scholar 

  • Passonneau JV, Lauderdal VR (1974) A comparison of three methods of glycogen measurement in tissues. Anal Biochem 60: 405–412

    Google Scholar 

  • Plaschke K, Hoyer S (1993) Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus. Int J Dev Neurosci 11: 477–483

    Google Scholar 

  • Reul JMHM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117: 2505–2511

    Google Scholar 

  • Reul JMHM, van den Bosch FR, de Kloet ER (1987) Relative occupation of type-I and type-II corticosteroid receptors in rat brain following stress and dexamethasone treatment: functional implications. J Endocr 115: 459–467

    Google Scholar 

  • Sapolsky RM (1985) A mechanism for glucocorticoid toxicity in the hippocampus: increased neuronal vulnerability to metabolic insults. J Neurosci 5: 1227–1231

    Google Scholar 

  • Sapolsky RM, Pulsinelli WA (1985) Glucocorticoids potentiate ischemie injury to neurons: therapeutic implications. Science 229: 1397–1400

    Google Scholar 

  • Sapolsky RM (1986) Glucocorticoid toxicity in the hippocampus: reversal by supplementation with brain fuels. J Neurosci 6: 2240–2244

    Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1983a) The adrenocortical stress-response in the aged male rat: impairment of recovery from stress. Exp Gerontol 18: 55–64

    Google Scholar 

  • Sapolsky R, McEwen B, Rainbow T (1983b) Quantitative autoradiography of3H-corticosterone receptors in rat brain. Brain Res 271: 331–337

    Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1985) Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J Neurosci 5: 1222–1227

    Google Scholar 

  • Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7: 284–301

    Google Scholar 

  • Sapolsky RM, Uno H, Rebert CS, Finch CE (1990) Hippocampal damage associated with prolonged exposure in primates. J Neurosci 10: 2897–2902

    Google Scholar 

  • Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13: 72–78

    Google Scholar 

  • Sutanto W, van Eekelen JAM, Reul JMHM, de Kloet ER (1988) Species-specific topography of corticosteroid receptor types in rat and hamster brain. Neuroendocrinology 47: 398–404

    Google Scholar 

  • Swaab DF, Raadsheer FC, Endert E, Hofman MA, Kamphorst W, Ravid R (1994) Increased Cortisol levels in aging and Alzheimer's disease in postmortem cerebrospinal fluid. J Neuroendocrinol 6: 681–687

    Google Scholar 

  • Tanzi RE, George-Hyslop PS, Gusella JF (1991) Molecular genetics of Alzheimer disease amyloid. J Biol Chem 266: 20579–20582

    Google Scholar 

  • Tombaugh GC, Yang SH, Swanson RA, Sapolsky RM (1992) Glucocorticoids exacerbate hypoxic and hypoglycemic hippocampal injury in vitro: biochemical correlates and a role for astrocytes. J Neurochem 59: 137–146

    Google Scholar 

  • Tombaugh G, Sapolsky R (1993) Corticosterone accelerates hypoxia-induced ATP loss in cultured hippocampal astrocytes. Brain Res 588: 154–159

    Google Scholar 

  • Trapp T, Rupprecht R, Castren M, Reul IMHM, Holsboer F (1994) Heterodimerization between mineralocorticoid and glucocorticoid receptor: a new principle of glucocorticoid action in the CNS. Neuron 13: 1457–1462

    Google Scholar 

  • Traxinger RR, Nordlie RC (1990) Hormonal responses of glucose-6-phosphatase catalytic unit studied by stopped-flow analysis. Biochem Cell Biol 68: 454–458

    Google Scholar 

  • Virgin CE jr., Ha TPT, Packan DR, Tombaugh GC, Yang SH, Horner HC, Sapolsky RM (1991) Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem 57: 1422–1428

    Google Scholar 

  • Zhu CZ, Auer RN (1994) Intraventricular administration of insulin and IGF-1 in transient forebrain ischemia. J Cereb Blood Flow Metab 14: 237–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plaschke, K., Müller, D. & Hoyer, S. Effect of adrenalectomy and corticosterone substitution on glucose and glycogen metabolism in rat brain. J. Neural Transmission 103, 89–100 (1996). https://doi.org/10.1007/BF01292619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01292619

Keywords

Navigation