Skip to main content
Log in

A light and electron microscopic study of the flagellate-to-ameba conversion in the MyxomyceteStemonitis pallida

  • Original Papers
  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The flagellate-to-ameba conversion process of the MyxomyceteStemonitis pallida was investigated with Nomarski optics and electron microscopy. The flagellate has two flagella, a long and a short one. When the water film containing the flagellates becomes very thin, they retract their flagella, usually the short one first and then the long one. The short flagellum is retracted by only one method, in which the sheath membrane of the flagellum fuses with the cell membrane, consequently causing the axoneme to be absorbed into the cytoplasm. Retraction of the long flagellum can be divided into four types. In all cases, fusion of the sheath membrane and the cell membrane takes place. The retracted axoneme of the long flagellum sometimes beats convulsively for about 10 minutes after retraction, and after 10–15 minutes it became indistinguishable as it was detached from the blepharoplast.

Analysis of thin sections shows that the retracted axonemes disintegrate in the following squence: B-tubules, A-tubules, spokes, central microtubules. In almost all cells the degradation begins immediately after retraction and is completed within 90 minutes. Only on rare occasions, structures which seem to have been derived from retracted axonemes are observed in the ameba about 90 minutes after conversion. The basal bodies and cytoplasmic microtubules are a little more stable than the retracted axonemes. Some basal bodies of the short flagellum, whose C-tubules are affected, are present in the amebae more than 90 minutes after conversion. Cytoplasmic microtubules decrease in number and become shorter in the amebae after about 24 hours, when newly formed regions filled with flocculent material appear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich, H. C., 1968: The development of flagella in swarm cells of the myxomycetePhysarum flavicomum. J. gen. Microbiol.50, 217–222.

    Google Scholar 

  • —, 1969: The ultrastructure of mitosis in myxamoebae and plasmodia ofPhysarum flavicomum. Amer. J. Bot.56, 290–299.

    Google Scholar 

  • Alexopoulus, C. J., 1963: The myxomycetes II. Bot. Rev.29, 1–78.

    Google Scholar 

  • —, 1966: Morphogenesis in the myxomycetes. In: The Fungi (G. C. Ainsworth andA. S. Sussman, eds.), Vol. II, pp. 211–234. New York: Academic Press.

    Google Scholar 

  • Behnke, O., andA. Forer, 1967: Evidence for four classes of microtubules in individual cells. J. Cell Sci.2, 169–192.

    Google Scholar 

  • Dingle, A. D., andC. Fulton, 1966: Development of the flagellar apparatus ofNaegleria. J. Cell Biol.31, 43–54.

    Google Scholar 

  • Furtado, J. S., andL. S. Olive, 1970: Ultrastructural studies of protostelids: The amoeboflagellate stage. Cytobiologie2, 200–219.

    Google Scholar 

  • Fulton, C., andA. D. Dingle, 1967: Appearance of the flagellate phenotype in populations ofNaegleria amebae. Develop. Biol.15, 165–191.

    Google Scholar 

  • —, 1970: Amebo-flagellates as research partners: The laboratory biology ofNaegleria andTetramitus. In: Methods in cell biology (M. Prescott, ed.), Vol. 4, pp. 341–476. New York: Academic Press.

    Google Scholar 

  • Gilbert, H. C., 1935: Critical events in the life history ofCeratiomyxa. Amer. J. Bot.22, 52–74.

    Google Scholar 

  • Goldman, R. D., andD. M. Knipe, 1973: Functions of cytoplasmic fibers in non-muscle cell motility. Cold Spring Harbor Symp. Quant. Biol.37, 523–534.

    Google Scholar 

  • Howard, F. L., 1931: The life history ofPhysarum polycephalum. Amer. J. Bot.18, 116–133.

    Google Scholar 

  • Kerr, N. S., 1960: Flagella formation by myxamoebae of the true slime moldDidymium nigripes. J. Protozool.7, 103–108.

    Google Scholar 

  • Kerr, S. J., 1972: Flagellum growth and regeneration on the true slime mouldDidymium nigripes. J. gen. Microbiol.72, 419–427.

    Google Scholar 

  • Koch, W. J., 1968: Studies of the motile cells of chytrids. V. Flagellar retraction in posteriorly uniflagellate fungi. Amer. J. Bot.55, 841–859.

    Google Scholar 

  • Koevenig, J. L., 1964: Studies on life cycle ofPhysarum gyrosum and other myxomycetes. Mycologia56, 170–184.

    Google Scholar 

  • Outka, D. E., 1965: The amoeba-to-flagellate transformation inTetramitus rostratus, I. J. Protozool.12, 85–93.

    Google Scholar 

  • —, andB. C. Kluss, 1967: The amoeba-to-flagellate transformation inTetramitus rostratus, II. J. Cell Biol.35, 323–346.

    Google Scholar 

  • Pollard, T. D., andE. D. Korn, 1973: The “contractile” proteins ofAcanthamoeba castellanii. Cold Spring Harbor Symp. Quant. Biol.37, 573–583.

    Google Scholar 

  • Martin, G. W., 1940: The myxomycetes. Bot. Rev.6, 356–388.

    Google Scholar 

  • Murphy, D. B., andL. G. Tilney, 1974: The role of microtubules in the movement of pigment granules in teleost melanophores. J. Cell Biol.61, 757–779.

    Google Scholar 

  • Reynolds, E. S., 1963: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212.

    Google Scholar 

  • Ross, I. K., 1967: Growth and development of the myxomycetePerichaena vermicularis. I. Cultivation and vegetative nuclear division. Amer. J. Bot.54, 617–625.

    Google Scholar 

  • Roth, L. E., andY. Shigenaka, 1964: The resorption of cilia. Z. Zellforsch.64, 19–24.

    Google Scholar 

  • Schuster, F., 1965: Ultrastructure and morphogenesis of solitary stages of true slime molds. Protistologica1, 49–62.

    Google Scholar 

  • Shoger, R. L., andG. G. Brown, 1970: Ultrastructural study of sperm-egg interaction of the horseshoe crab,Limulus polyphemus L. (Merostomata: Xiphosura). J. Submicr. Cytol.2, 167–179.

    Google Scholar 

  • Soll, D. R., R. Bromberg, andD. R. Sonneborn, 1969: Zoospore germination in the water mold,Blastocladiella emersonii. Develop. Biol.20, 183–217.

    Google Scholar 

  • Spurr, A. R., 1969: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43.

    Google Scholar 

  • Stosch, H. A. von, 1965: Wachstums- und Entwicklungsphysiologie der Myxomyceten. Handbuch der Pflanzenphysiologie15 (Pt. 1), 641–679.

    Google Scholar 

  • Tilney, L. G., Y. Hiramoto, andD. Marsland, 1966: Studies on the microtubules in Heliozoa. III. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia ofActinosphaerium nucleofilum (Barrett). J. Cell Biol.29, 77–95.

    Google Scholar 

  • —, andJ. R. Gibbins, 1969: Microtubules in the formation and development of the primary mesenchyme inArbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J. Cell Biol.41, 227–250.

    Google Scholar 

  • —, 1975: Actin filaments in the acrosomal reaction ofLimulus sperm. J. Cell Biol.64, 289–310.

    Google Scholar 

  • Williams, N. E., andJ. Frankel, 1973: Regulation of microtubules inTetrahymena. I. Electron microscopy of oral replacement. J. Cell Biol.56, 441–457.

    Google Scholar 

  • Witman, G. B., K. Carlson, J. Berliner, andJ. L. Rosenbaum, 1972:Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, membranes, and mastigonemes. J. Cell Biol.54, 507–539.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishigami, M. A light and electron microscopic study of the flagellate-to-ameba conversion in the MyxomyceteStemonitis pallida . Protoplasma 91, 31–54 (1977). https://doi.org/10.1007/BF01284194

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01284194

Keywords

Navigation