Skip to main content
Log in

The growth of the grass pollen tube: 1. Characteristics of the polysaccharide particles (“P-particles”) associated with apical growth

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

Numerous polysaccharide-rich particles (“P-particles”) occur in the tip region of growing grass pollen tubes, where they apparently contribute to the extending wall. In other families the corresponding bodies have been shown to originate from dictyosome activity during pollen tube growth. However, in the grasses the main synthesis precedes anthesis; the P-particles represent up to 30% of the reserves of the vegetative cell of the dormant grain, numbering over one million in the pollen grain of rye. Their membranes are incomplete. The polysaccharide content, which is initially coarsely granular but becomes microfibrillar with hydration, is readily extracted with ammonium oxalate, and is probably pectic in nature. Simple methods for isolating the particles in relatively pure populations are described. Hydrolysis yields principally galactose, arabinose, glucose, and rhamnose. Apart from proteins derived from the original bounding membranes, a protein fraction is tenaciously bound to the polysaccharide. Isolated P-particles move anodically in an electrical field, and the possibility that their movement from the grain to the tube tip during growth depends on a potential gradient, already demonstrated for lily pollen tubes, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim, P., Mühlethaler, K., Frey-Wyssling, A., 1960: Stained pectin as seen in the electron microscope. J. biophys. biochem. Cytol.8, 501–506.

    PubMed  Google Scholar 

  • Blumenkrantz, N., Asboe-Hansen, G., 1973: New method for quantitative determination of uronic acids. Anal. Biochem.54, 484–489.

    PubMed  Google Scholar 

  • Bonnett, H. T., Newcomb, E. H., 1966: Coated vesicles and other cytoplasmic components of growing root hairs of radish. Protoplasma62, 59–75.

    Google Scholar 

  • Cass, D. D., Peteya, D. J., 1979: Growth of barley pollen tubesin vivo. I. Ultrastructural aspects of early pollen tube growth in the stigmatic hair. Can. J. Bot.57, 386–396.

    Google Scholar 

  • Colvin, J. R., Leppard, G. G., 1973: Fibrillar, modified polygalacturonic acid in, on and between plant cell walls. In: Biogenesis ofPlant Cell Wall Polysaccharides (Loewus, F., ed.), p. 315. New York-London: Academic Press.

    Google Scholar 

  • Cresti, M., van Went, J. L., 1976: Callose deposition and plug formation inPetunia pollen tubesin situ. Planta133, 35–40.

    Google Scholar 

  • Dashek, W. V., Rosen, W. G., 1966: Electron-microscopical localisation of chemical components in the growth zone ofLilium pollen tubes. Protoplasma61, 192–204.

    PubMed  Google Scholar 

  • De Nettancourt, D., Devreux, M., Bozzini, A., Cresti, M., Pacini, E., Sarfatti, G., 1973: Ultrastructural aspects of self-incompatibility mechanism inLycopersicum peruvianum Mill. J. Cell Sci.12, 403–419.

    PubMed  Google Scholar 

  • Dickinson, H. G., Lawson, J., 1975: Pollen tube growth in the stigma ofOenothera organensis following compatible and incompatible intraspecific pollinations. Proc. Roy. Soc.B188, 327–344.

    Google Scholar 

  • — —, 1976: The growth of the pollen tube wall inOenothera organensis. J. Cell Sci.18, 519–525.

    Google Scholar 

  • Engels, F. M., 1973: Function of Golgi vesicles in relation to cell wall synthesis in germinatingPetunia pollen. I. Isolation of Golgi vesicles. Acta Bot. Neerl.22, 6–13.

    Google Scholar 

  • —, 1974 a: Function of Golgi vesicles in relation to cell wall synthesis in germinatingPetunia pollen. II. Chemical composition of Golgi vesicles and pollen tube wall. Acta Bot. Neerl.23, 81–89.

    Google Scholar 

  • —, 1974 b: Function of Golgi vesicles in relation to cell wall synthesis in germinatingPetunia pollen. III. The ultrastructure of the tube wall. Acta Bot. Neerl.23, 201–208.

    Google Scholar 

  • —, 1974 c: Function of Golgi vesicles in relation to cell wall synthesis in germinatingPetunia pollen. IV. Identification of cellulose in pollen tube walls and Golgi vesicles by X-ray diffraction. Acta Bot. Neerl.23, 209–216.

    Google Scholar 

  • Grove, S. N., Bracker, C. E., Morré, D. J., 1970: An ultrastructural basis for hyphal tip growth inPythium ultimum. Amer. J. Bot.57, 245–266.

    Google Scholar 

  • Heslop-Harrison, J., 1979 a: Aspects of the structure, cytochemistry and germination of the pollen of rye (Secale cereale L.). Ann. Bot. Suppl. No. 1, Vol.44, pp. 1–47.

    Google Scholar 

  • —, 1979 b: Pollen-stigma interaction in the grasses: a brief review. N. Z. J. Bot.17, 537–546.

    Google Scholar 

  • Heslop-Harrison, Y., Heslop-Harrison, J., 1979: The digestive glands ofPinguicula: fine-structure and cytochemistry. Ann. Bot.47, 293–319.

    Google Scholar 

  • Jarvis, M. C., Hall, M. A., Threlfall, D. R., Friend, J., 1981: The polysaccharide structure of potato cell walls: chemical fractionation. Planta152, 93–100.

    Google Scholar 

  • Lato, M., Brunelli, B., Giuffina, B., Mezzini, A., 1969: Thinlayer chromatography of sugars on silica gel impregnated with sodium acetate, monosodium phosphate and disodium phosphate. J. Chromat.39, 407–416.

    Google Scholar 

  • Nakamura, S., Miki-Hirosige, H., Iwanami, Y., 1979: On the mechanisms of callose wall and callose plug formation in germinating pollen. Jap. J. Palynol.24, 33–44.

    Google Scholar 

  • Northcote, D. H., Pickett-Heaps, J. D., 1966: A function of the Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem. J.98, 159–167.

    PubMed  Google Scholar 

  • Ott, D. W., Brown, R. M., 1974: Developmental cytology of the genusVaucheria. I. Organisation of the vegetative filament. Brit. Phycol. J.9, 11–126.

    Google Scholar 

  • Pickett-Heaps, J. D., 1967: The use of autoradiography for investigating wall secretion in plant cells. Protoplasma64, 49–66.

    Google Scholar 

  • Picton, J. M., Steer, M. W., 1981: Determination of secretory vesicle production rates by dictyosomes in pollen tubes ofTradescantia using cytochalasin D. J. Cell Sci.49, 261–272.

    PubMed  Google Scholar 

  • Roelofsen, P. A., Kreger, D. R., 1951: The submicroscopic structure of pectin in collenchyma cell walls. J. exp. Bot.2, 332–343.

    Google Scholar 

  • Rosen, W. G., Gawlick, S. R., 1966: Fine structure of lily pollen tubes following various fixation and staining procedures. Protoplasma61, 181–191.

    PubMed  Google Scholar 

  • — —,Dashek, W. V., Siegesmund, K. A., 1964: Fine structure and cytochemistry ofLilium pollen tubes. Amer. J. Bot.51, 61–71.

    Google Scholar 

  • Ruchel, R., 1976: Sequential protein analysis from single identified neurons ofAplysia californica. A microelectrophoretic technique involving polyacrylamide gradient gels and isoelectric focusing. J. Histochem. Cytochem.24, 773–791.

    PubMed  Google Scholar 

  • Sassen, M. A., 1964: Fine structure ofPetunia pollen grain and pollen tube. Acta Bot. Neerl.13, 175–181.

    Google Scholar 

  • Schaffner, W., Weissmann, C., 1973: A rapid, sensitive and specific method for the determination of protein in dilute solution. Anal. Biochem.56, 502–514.

    PubMed  Google Scholar 

  • Shivanna, K. R., Heslop-Harrison, J., 1981: Membrane state and pollen viability. Ann. Bot.47, 759–770.

    Google Scholar 

  • Van der Woude, W. J., Morré, D. J., 1968: Endoplasmic reticulum-dictyosome-secretory vesicle associations in pollen tubes ofLilium longiflorum Thunb. Proc. Indiana Acad. Sci.77, 164–170.

    Google Scholar 

  • — —,Bracker, C. E., 1971: Isolation and characterisation of secretory vesicles in germinated pollen ofLilium longiflorum. J. Cell Sci.8, 331–351.

    PubMed  Google Scholar 

  • Weisenseel, M. H., Nuccitelli, R., Jaffé, L. F., 1975: Large electrical currents traverse growing pollen tubes. J. Cell Biol.66, 556–567.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heslop-Harrison, J., Heslop-Harrison, Y. The growth of the grass pollen tube: 1. Characteristics of the polysaccharide particles (“P-particles”) associated with apical growth. Protoplasma 112, 71–80 (1982). https://doi.org/10.1007/BF01280217

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01280217

Keywords

Navigation