Skip to main content
Log in

Poroviscoelastic analysis of borehole and cylinder problems

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

This paper addresses the phenomena of mechanical creep and deformation in rock formations, coupled with the hydraulic effects of fluid flow. The theory is based on Biot's poroelasticity, generalized to encompass viscoelastic effects through the correspondence principle. Based on the resultant poroviscoelastic theory, stress and deformation analyses are performed. The interactions between the fluid pore pressure diffusion and the elastic/viscoelastic rock matrix deformation are illustrated via two important examples. First, the problem of a borehole subject to a non-hydrostatic stress state, but deforming under plane strain condition, is examined. Second, a cylinder under generalized plane strain conditions is solved. Three rocks, Berea Sandstone, Danian Chalk, and a deep water Gulf of Mexico Shale, covering a wide range of permeabilities, are considered. The significance of poro-and viscoelastic time-dependent effects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Biot, M. A.: General theory of three-dimensional consolidation, J. Appl. Phys.12, 155–164 (1941).

    Google Scholar 

  2. Detournay, E., Cheng, A. H.-D.: Fundamentals of poroelasticity. In: Comprehensive rock engineering: principles, practice & projects. Vol. II, Analysis and design method (Fairhurst, C., ed.) pp. 113–171. Pergamon 1993.

  3. Biot, M. A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys.33, 1482–1498 (1962).

    Google Scholar 

  4. Cleary, M. P.: Elastic and dynamic regimes of fluid-impregnated solids, with diverse micro-structure. Int. J. Solids Struct.14, 795–819 (1978).

    Google Scholar 

  5. Biot, M. A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys.27, 459–467 (1956).

    Google Scholar 

  6. Biot, M. A.: Nonlinear and semilinear rheology of porous solids. J. Geophys. Res.78, 4924–4937 (1973).

    Google Scholar 

  7. Tabaddor, F., Little, R. W.: Interacting continuous medium composed of an elastic solid and incompressible Newtonian fluid. Int. J. Solids Struct.7, 825–841 (1971).

    Google Scholar 

  8. Wilson, R. K., Aifantis, E. C.: On the theory of consolidation with double porosity. Int. J. Eng. Sci.20, 1009–1035 (1982).

    Google Scholar 

  9. Coussy, O.: Mecanique des milieux poreux. Paris: Editions Technip 1991.

    Google Scholar 

  10. Vgenopoulou, I., Beskos, D. E.: Dynamic behavior of saturated poroviscoelastic media. Acta Mech.95, 185–195 (1992).

    Google Scholar 

  11. Abousleiman, Y., Cheng, A. H.-D., Jiang, C., Roegiers, J.-C.: A micromechanically consistent poroviscoelasticity theory for rock mechanics applications. Int. J. Rock Mech. Mining Sci. Geomech. Abstr.30, 1177–1180 (1993).

    Google Scholar 

  12. El Rabaa, A. W., Meadows, D. L.: Laboratory and field application of the strain relaxation method. SPE 15072, 56th California Regional Meeting, Oakland, CA, April 2–4, 1986.

  13. El Rabaa, A. W.: Determination of the stress field and fracture direction in the Danian chalk. in: Rock at great depth (Maury, V., Fourmaintraux, D., eds.) pp. 1017–1024 Rotterdam: Balkema 1989.

    Google Scholar 

  14. Warpinski, N. R., Teufel, L. W.: Author's reply to discussion of: A viscoelastic constitutive model for determining in-situ stress magnitudes from anelastic strain recovery of core. SPE Production Eng. 287–289, August 1989.

  15. Nakken, S. J., Chritensen, T. L., Marsden, R., Holt, R. M.: Mechanical behavior of clays at high stress levels for wellbore stability applications. In: Rock at great depth (Maury V., Fourmaintraux, D., eds.). Rotterdam: Balkema 1989.

    Google Scholar 

  16. Mody, F. K., Hale, A. H.: A borehole stability model to couple the mechanics and chemistry of drilling fluid/shale interaction. SPE/IADC 25728, Amsterdam, February 1993.

  17. Haimson, B. C., Roegiers, J.-C., Zoback, M. D.: (eds.) Proc. 2nd Int. Workshop hydraulic fracturing stress measurements, University of Wisconsin-Madison, Minneapolis, 1988.

  18. Warpinski, N. R., Teufel, L. W. A viscoelastic constitutive model for determining in-situ stress magnitudes from anelastic strain recovery of core. SPE Production Eng. 272–280, August 1989.

  19. Rice, J. R., Cleary, M. P.: Some basic stress-diffusion, solutions for fluid saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys.14, 227–241 (1976).

    Google Scholar 

  20. Flügge, W.: Viscoelasticity. Waltham: Blaisdell 1967.

    Google Scholar 

  21. Biot, M. A., Willis, D. G.: The elastic coefficients of the theory of consolidation. J. Appl., Mech.78, 91–96 (1956).

    Google Scholar 

  22. Nur, A., Byerlee, J. D.: An exact effective stress law for elastic deformation of rock with fluids. J. Geophys. Res.76, 6414–6419 (1971).

    Google Scholar 

  23. Zimmerman, R., Somerton, W., King, M.: Compressibility of porous rocks. J. Geophys. Res.91, 12765–12777 (1986).

    Google Scholar 

  24. Taylor, D. W., Merchant, W.: A theory of clay consolidation accounting for secondary compression. J. Math. Phys.19, 167–185 (1940).

    Google Scholar 

  25. Corapcioglu, M. Y., Brutsaert, W.: Viscoelastic aquifer model applied to subsidence due to pumping. Water Resour. Res.13, 597–604 (1977).

    Google Scholar 

  26. Christensen, R. M.: Theory of viscoelasticity, 2nd. ed. New York: Academic Press 1982.

    Google Scholar 

  27. Caroll, M. M.: Mechanical responce of fluid-saturated porous materials. In: Theoretical and applied mechanics. Proceedings of the 15th Int. Cong. of Theoretical and Applid Mechanics, Toronto, 1980 (Rimrott, F. P. J., Tabarrok, B. eds.) pp. 251–262.

  28. Detournay, E., Cheng, A. H.-D.: Poroelastic response of a borehole in a non-hydrostatic stress field. Int. J. Rock Mech. Mining Sci. Geomech. Abstr.25, 171–182 (1988).

    Google Scholar 

  29. Lekhnitskii, S. G.: Theory of elasticity of an anisotropic elastic body. San Francisco: Holden-Day 1963.

    Google Scholar 

  30. Saad, A.: Elasticity theory and applications. New York: Pergamon Press 1974.

    Google Scholar 

  31. Brady, B. H. G., Bray, J. W.: The boundary element method for determining stresses and displacements around long openings in a triaxial stress field. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr.15, 21–28 (1978).

    Google Scholar 

  32. Cryer, C. W.: A comparison of the three-dimensional consolidation, theories of Biot and Terzaghi. Q. J. Mech. Appl. Math.16, 401–412 (1963).

    Google Scholar 

  33. Abousleiman, Y., Cheng, A. H.-D., Cui, L., Detournay, E., Roegiers, J.-C.: Mandel's problem revisited Géotechnique (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abousleiman, Y., Cheng, A.H.D., Jiang, C. et al. Poroviscoelastic analysis of borehole and cylinder problems. Acta Mechanica 119, 199–219 (1996). https://doi.org/10.1007/BF01274248

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01274248

Keywords

Navigation